These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38101635)

  • 1. Life cycle assessment of experimental Al-ion batteries for energy storage applications.
    Mączka M; Guzik M; Mosiałek M; Wojnarowska M; Pasierb P; Nitkiewicz T
    Sci Total Environ; 2024 Feb; 912():169258. PubMed ID: 38101635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppressing Corrosion of Aluminum Foils via Highly Conductive Graphene-like Carbon Coating in High-Performance Lithium-Based Batteries.
    Li X; Deng S; Banis MN; Doyle-Davis K; Zhang D; Zhang T; Yang J; Divigalpitiya R; Brandys F; Li R; Sun X
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):32826-32832. PubMed ID: 31414592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the environmental impact of a Li-rich high-capacity cathode material in electric vehicles via life cycle assessment.
    Wang Y; Yu Y; Huang K; Chen B; Deng W; Yao Y
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1251-1260. PubMed ID: 27770328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resource Recovery of Spent Lithium-Ion Battery Cathode Materials by a Supercritical Carbon Dioxide System.
    Fu Y; Dong X; Ebin B
    Molecules; 2024 Apr; 29(7):. PubMed ID: 38611917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A low-toxicity and high-efficiency deep eutectic solvent for the separation of aluminum foil and cathode materials from spent lithium-ion batteries.
    Wang M; Tan Q; Liu L; Li J
    J Hazard Mater; 2019 Dec; 380():120846. PubMed ID: 31279946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery and Reuse of Composite Cathode Binder in Lithium Ion Batteries.
    Sarkar A; May R; Ramesh S; Chang W; Marbella LE
    ChemistryOpen; 2021 May; 10(5):545-552. PubMed ID: 33945235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental impacts of a stand-alone photovoltaic system in sub-saharan Africa: A case study in Burkina Faso.
    Badza K; Sawadogo M; Soro YM
    Heliyon; 2024 Oct; 10(19):e38954. PubMed ID: 39430503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhou L; Minafra N; Zeier WG; Nazar LF
    Acc Chem Res; 2021 Jun; 54(12):2717-2728. PubMed ID: 34032414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies.
    Quan J; Zhao S; Song D; Wang T; He W; Li G
    Sci Total Environ; 2022 May; 819():153105. PubMed ID: 35041948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative life cycle assessment of high performance lithium-sulfur battery cathodes.
    Lopez S; Akizu-Gardoki O; Lizundia E
    J Clean Prod; 2021 Feb; 282():124528. PubMed ID: 33041531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Binders, Carbons, and Solvents on the Stability of Phosphorus Anodes for Li-ion Batteries.
    Nitta N; Lei D; Jung HR; Gordon D; Zhao E; Gresham G; Cai J; Luzinov I; Yushin G
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):25991-26001. PubMed ID: 27636526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental Benefit Assessment of Second-Life Use of Electric Vehicle Lithium-Ion Batteries in Multiple Scenarios Considering Performance Degradation and Economic Value.
    Cui J; Tan Q; Liu L; Li J
    Environ Sci Technol; 2023 Jun; 57(23):8559-8567. PubMed ID: 37272409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Life Cycle Assessment of a Novel Al-Ion and a Li-Ion Battery for Stationary Applications.
    Salgado Delgado MA; Usai L; Pan Q; Hammer Strømman A
    Materials (Basel); 2019 Oct; 12(19):. PubMed ID: 31597317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles.
    Cusenza MA; Bobba S; Ardente F; Cellura M; Di Persio F
    J Clean Prod; 2019 Apr; 215():634-649. PubMed ID: 31007414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sustainable approach to cathode delamination using a green solvent.
    Buken O; Mancini K; Sarkar A
    RSC Adv; 2021 Aug; 11(44):27356-27368. PubMed ID: 35480693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Life cycle assessment of a LiFePO
    Botejara-Antúnez M; Prieto-Fernández A; González-Domínguez J; Sánchez-Barroso G; García-Sanz-Calcedo J
    Environ Sci Pollut Res Int; 2024 Oct; 31(46):57242-57258. PubMed ID: 38427173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorinated High-Voltage Electrolytes To Stabilize Nickel-Rich Lithium Batteries.
    Poches C; Razzaq AA; Studer H; Ogilvie R; Lama B; Paudel TR; Li X; Pupek K; Xing W
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):43648-43655. PubMed ID: 37696006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing the Ion-Conducting Polymers with Sulfonate and Ether Moieties as Cathode Binders for High-Power Lithium-Ion Batteries.
    Tsao CH; Yang TK; Chen KY; Fang CE; Ueda M; Richter FH; Janek J; Chiu CC; Kuo PL
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9846-9855. PubMed ID: 33594888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.