These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 38102111)

  • 1. Discovery of fast and stable proton storage in bulk hexagonal molybdenum oxide.
    Xu T; Xu Z; Yao T; Zhang M; Chen D; Zhang X; Shen L
    Nat Commun; 2023 Dec; 14(1):8360. PubMed ID: 38102111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Niobium tungsten oxides for high-rate lithium-ion energy storage.
    Griffith KJ; Wiaderek KM; Cibin G; Marbella LE; Grey CP
    Nature; 2018 Jul; 559(7715):556-563. PubMed ID: 30046074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical Nanostructured WO3 with Biomimetic Proton Channels and Mixed Ionic-Electronic Conductivity for Electrochemical Energy Storage.
    Chen Z; Peng Y; Liu F; Le Z; Zhu J; Shen G; Zhang D; Wen M; Xiao S; Liu CP; Lu Y; Li H
    Nano Lett; 2015 Oct; 15(10):6802-8. PubMed ID: 26406938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ruthenia-based electrochemical supercapacitors: insights from first-principles calculations.
    Ozoliņš V; Zhou F; Asta M
    Acc Chem Res; 2013 May; 46(5):1084-93. PubMed ID: 23560700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activating the Highly Reversible Mo
    Cai X; Sang XG; Song Y; Guo D; Liu XX; Sun X
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48565-48571. PubMed ID: 33048525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydronium Intercalation Enables High Rate in Hexagonal Molybdate Single Crystals.
    Guo H; Wu S; Chen W; Su Z; Wang Q; Sharma N; Rong C; Fleischmann S; Liu Z; Zhao C
    Adv Mater; 2024 Feb; 36(6):e2307118. PubMed ID: 38016087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of a three-proton insertion mechanism in α-molybdenum trioxide leading to enhanced charge storage capacity.
    Lei Y; Zhao W; Yin J; Ma Y; Zhao Z; Yin J; Khan Y; Hedhili MN; Chen L; Wang Q; Yuan Y; Zhang X; Bakr OM; Mohammed OF; Alshareef HN
    Nat Commun; 2023 Sep; 14(1):5490. PubMed ID: 37679354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage.
    Liang Y; Yoo HD; Li Y; Shuai J; Calderon HA; Robles Hernandez FC; Grabow LC; Yao Y
    Nano Lett; 2015 Mar; 15(3):2194-202. PubMed ID: 25706101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MXene as a Charge Storage Host.
    Okubo M; Sugahara A; Kajiyama S; Yamada A
    Acc Chem Res; 2018 Mar; 51(3):591-599. PubMed ID: 29469564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Crowding Electrolytes for Stable Proton Batteries.
    Wu S; Chen J; Su Z; Guo H; Zhao T; Jia C; Stansby J; Tang J; Rawal A; Fang Y; Ho J; Zhao C
    Small; 2022 Nov; 18(45):e2202992. PubMed ID: 36156409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Water-in-Sugar" Electrolytes Enable Ultrafast and Stable Electrochemical Naked Proton Storage.
    Su Z; Chen J; Ren W; Guo H; Jia C; Yin S; Ho J; Zhao C
    Small; 2021 Oct; 17(40):e2102375. PubMed ID: 34499420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible Electron-Rich Ion Channels Enable Ultrafast and Stable Aqueous Zinc-Ion Storage.
    Cheng L; Zhu Q; Liang J; Tang M; Yang Y; Wang S; Ji P; Wang G; Chen W; Zhang X; Wang H
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):54096-54105. PubMed ID: 34749501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Versatile Strategy for Achieving Fast-Charging Batteries via Interfacial Engineering: Pseudocapacitive Potassium Storage without Nanostructuring.
    Kim S; Jung H; Lim WG; Lim E; Jo C; Lee KS; Han JW; Lee J
    Small; 2022 Jul; 18(27):e2202798. PubMed ID: 35661400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructing a Micrometer-Sized Structure through an Initial Electrochemical Process for Ultrahigh-Performance Li
    He SA; Liu Q; Luo W; Cui Z; Zou R
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):35522-35533. PubMed ID: 35882432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus-Mediated MoS
    Liu S; Yin Y; Wu M; Hui KS; Hui KN; Ouyang CY; Jun SC
    Small; 2019 Jan; 15(4):e1803984. PubMed ID: 30427569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticles of mesoporous SO3H-functionalized Si-MCM-41 with superior proton conductivity.
    Marschall R; Bannat I; Feldhoff A; Wang L; Lu GQ; Wark M
    Small; 2009 Apr; 5(7):854-9. PubMed ID: 19226596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversible and rapid calcium intercalation into molybdenum vanadium oxides.
    Lakhnot AS; Bhimani K; Mahajani V; Panchal RA; Sharma S; Koratkar N
    Proc Natl Acad Sci U S A; 2022 Jul; 119(30):e2205762119. PubMed ID: 35862458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High oxide ion and proton conductivity in a disordered hexagonal perovskite.
    Fop S; McCombie KS; Wildman EJ; Skakle JMS; Irvine JTS; Connor PA; Savaniu C; Ritter C; Mclaughlin AC
    Nat Mater; 2020 Jul; 19(7):752-757. PubMed ID: 32123332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of abnormal lithium-storage sites in molybdenum dioxide electrodes.
    Shon JK; Lee HS; Park GO; Yoon J; Park E; Park GS; Kong SS; Jin M; Choi JM; Chang H; Doo S; Kim JM; Yoon WS; Pak C; Kim H; Stucky GD
    Nat Commun; 2016 Mar; 7():11049. PubMed ID: 27001935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.