These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 38102118)

  • 1. Influence of Steric and Dispersion Interactions on the Thermochemistry of Crowded (Fluoro)alkyl Compounds.
    Bursch M; Grimme S; Hansen A
    Acc Chem Res; 2024 Jan; 57(1):153-163. PubMed ID: 38102118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of sterically crowded alkanes: assessment of non-empirical density functionals including double-hybrid cost-effective methods.
    Maíz-Pastor P; Brémond É; Pérez-Jiménez ÁJ; Adamo C; Sancho-Garcia JC
    Chemphyschem; 2024 Sep; ():e202400466. PubMed ID: 39257369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overcoming lability of extremely long alkane carbon-carbon bonds through dispersion forces.
    Schreiner PR; Chernish LV; Gunchenko PA; Tikhonchuk EY; Hausmann H; Serafin M; Schlecht S; Dahl JE; Carlson RM; Fokin AA
    Nature; 2011 Sep; 477(7364):308-11. PubMed ID: 21921913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond Steric Crowding: Dispersion Energy Donor Effects in Large Hydrocarbon Ligands.
    Mears KL; Power PP
    Acc Chem Res; 2022 May; 55(9):1337-1348. PubMed ID: 35427132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimizing density functional failures for non-covalent interactions beyond van der Waals complexes.
    Corminboeuf C
    Acc Chem Res; 2014 Nov; 47(11):3217-24. PubMed ID: 24655016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intramolecular interactions in sterically crowded hydrocarbon molecules.
    Meitei OR; Heßelmann A
    J Comput Chem; 2017 Nov; 38(29):2500-2508. PubMed ID: 28782828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of the Empirical Dispersion Corrections to Density Functional Theory: Thermodynamics of Hydrocarbon Isomerizations and Olefin Monomer Insertion Reactions.
    Shamov GA; Budzelaar PH; Schreckenbach G
    J Chem Theory Comput; 2010 Feb; 6(2):477-90. PubMed ID: 26617303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding and Quantifying London Dispersion Effects in Organometallic Complexes.
    Bursch M; Caldeweyher E; Hansen A; Neugebauer H; Ehlert S; Grimme S
    Acc Chem Res; 2019 Jan; 52(1):258-266. PubMed ID: 30586286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The p-block challenge: assessing quantum chemistry methods for inorganic heterocycle dimerizations.
    Gasevic T; Bursch M; Ma Q; Grimme S; Werner HJ; Hansen A
    Phys Chem Chem Phys; 2024 May; 26(18):13884-13908. PubMed ID: 38661329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How do London Dispersion Interactions Impact the Photochemical Processes of Molecular Switches?
    Fabrizio A; Corminboeuf C
    J Phys Chem Lett; 2018 Feb; 9(3):464-470. PubMed ID: 29320636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An NMR Spectroscopy View on London Dispersion in Catalysis: Detection, Quantification, and Application in Ion Pair and Transition Metal Catalysis.
    Gramüller J; Gschwind RM
    Acc Chem Res; 2023 Nov; 56(21):2968-2979. PubMed ID: 37889132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Context-Dependent Significance of London Dispersion.
    Gravillier LA; Cockroft SL
    Acc Chem Res; 2023 Dec; 56(23):3535-3544. PubMed ID: 37994023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting and Understanding Non-Covalent Interactions Using Novel Forms of Symmetry-Adapted Perturbation Theory.
    Carter-Fenk K; Lao KU; Herbert JM
    Acc Chem Res; 2021 Oct; 54(19):3679-3690. PubMed ID: 34550669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the Limits of Intramolecular London Dispersion Stabilization with Bulky Dispersion Energy Donors in Alkane Solution.
    Schümann JM; Ochmann L; Becker J; Altun A; Harden I; Bistoni G; Schreiner PR
    J Am Chem Soc; 2023 Feb; 145(4):2093-2097. PubMed ID: 36688409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the Size Limit of Dispersion Energy Donors with a Bifluorenylidene Balance: Magic Cyclohexyl.
    Wilming FM; Marazzi B; Debes PP; Becker J; Schreiner PR
    J Org Chem; 2023 Jan; 88(2):1024-1035. PubMed ID: 36576961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved Description of Intra- and Intermolecular Interactions through Dispersion-Corrected Second-Order Møller-Plesset Perturbation Theory.
    Beran GJO; Greenwell C; Cook C; Řezáč J
    Acc Chem Res; 2023 Dec; 56(23):3525-3534. PubMed ID: 37963266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond Chemical Accuracy for Alkane Thermochemistry: The DH
    Li H; Tirri B; Brémond E; Sancho-García JC; Adamo C
    J Org Chem; 2021 Apr; 86(8):5538-5545. PubMed ID: 33822605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density functionals with broad applicability in chemistry.
    Zhao Y; Truhlar DG
    Acc Chem Res; 2008 Feb; 41(2):157-67. PubMed ID: 18186612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of ab initio and density functional methods for conformational equilibria of C(n)H(2n+2) alkane isomers (n = 4-8).
    Gruzman D; Karton A; Martin JM
    J Phys Chem A; 2009 Oct; 113(43):11974-83. PubMed ID: 19795892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.