BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38102161)

  • 41. Understanding the selectivity of fumagillin for the methionine aminopeptidase type II.
    Klein CD; Folkers G
    Oncol Res; 2003; 13(12):513-20. PubMed ID: 12899241
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural basis for the functional differences between type I and type II human methionine aminopeptidases.
    Addlagatta A; Hu X; Liu JO; Matthews BW
    Biochemistry; 2005 Nov; 44(45):14741-9. PubMed ID: 16274222
    [TBL] [Abstract][Full Text] [Related]  

  • 43. N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases.
    Van Damme P; Hole K; Gevaert K; Arnesen T
    Proteomics; 2015 Jul; 15(14):2436-46. PubMed ID: 25886145
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional expression of human methionine aminopeptidase type 1 in Saccharomyces cerevisiae.
    Dummitt B; Fei Y; Chang YH
    Protein Pept Lett; 2002 Aug; 9(4):295-303. PubMed ID: 12144506
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The 1.15A crystal structure of the Staphylococcus aureus methionyl-aminopeptidase and complexes with triazole based inhibitors.
    Oefner C; Douangamath A; D'Arcy A; Häfeli S; Mareque D; Mac Sweeney A; Padilla J; Pierau S; Schulz H; Thormann M; Wadman S; Dale GE
    J Mol Biol; 2003 Sep; 332(1):13-21. PubMed ID: 12946343
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Methionine aminopeptidases as potential targets for treatment of gastrointestinal cancers and other tumours.
    Mauriz JL; Martín-Renedo J; García-Palomo A; Tuñón MJ; González-Gallego J
    Curr Drug Targets; 2010 Nov; 11(11):1439-57. PubMed ID: 20583970
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Two methionine aminopeptidases from Acinetobacter baumannii are functional enzymes.
    Yuan H; Chai SC; Lam CK; Howard Xu H; Ye QZ
    Bioorg Med Chem Lett; 2011 Jun; 21(11):3395-8. PubMed ID: 21524572
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cryo-EM Structures Reveal Relocalization of MetAP in the Presence of Other Protein Biogenesis Factors at the Ribosomal Tunnel Exit.
    Bhakta S; Akbar S; Sengupta J
    J Mol Biol; 2019 Mar; 431(7):1426-1439. PubMed ID: 30753870
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Removal of N-terminal methionine from haemoglobin nascent peptides by a membrane-bound rat liver methionine aminopeptidase.
    Termignoni C; Freitas JO; Guimarães JA
    Biochem J; 1986 Mar; 234(2):469-73. PubMed ID: 3087345
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure and function of the methionine aminopeptidases.
    Lowther WT; Matthews BW
    Biochim Biophys Acta; 2000 Mar; 1477(1-2):157-67. PubMed ID: 10708856
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Beta-aminoketones as prodrugs for selective irreversible inhibitors of type-1 methionine aminopeptidases.
    Altmeyer M; Amtmann E; Heyl C; Marschner A; Scheidig AJ; Klein CD
    Bioorg Med Chem Lett; 2014 Nov; 24(22):5310-4. PubMed ID: 25293447
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interactions of Streptomyces griseus aminopeptidase with amino acid reaction products and their implications toward a catalytic mechanism.
    Gilboa R; Spungin-Bialik A; Wohlfahrt G; Schomburg D; Blumberg S; Shoham G
    Proteins; 2001 Sep; 44(4):490-504. PubMed ID: 11484227
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural analysis of bengamide derivatives as inhibitors of methionine aminopeptidases.
    Xu W; Lu JP; Ye QZ
    J Med Chem; 2012 Sep; 55(18):8021-7. PubMed ID: 22913487
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metal-mediated inhibition is a viable approach for inhibiting cellular methionine aminopeptidase.
    Chai SC; Ye QZ
    Bioorg Med Chem Lett; 2009 Dec; 19(24):6862-4. PubMed ID: 19889537
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Discovery of natural product ovalicin sensitive type 1 methionine aminopeptidases: molecular and structural basis.
    Pillalamarri V; Arya T; Haque N; Bala SC; Marapaka AK; Addlagatta A
    Biochem J; 2019 Mar; 476(6):991-1003. PubMed ID: 30837307
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Methionine aminopeptidases from Mycobacterium tuberculosis as novel antimycobacterial targets.
    Olaleye O; Raghunand TR; Bhat S; He J; Tyagi S; Lamichhane G; Gu P; Zhou J; Zhang Y; Grosset J; Bishai WR; Liu JO
    Chem Biol; 2010 Jan; 17(1):86-97. PubMed ID: 20142044
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Specificity for inhibitors of metal-substituted methionine aminopeptidase.
    Li JY; Chen LL; Cui YM; Luo QL; Li J; Nan FJ; Ye QZ
    Biochem Biophys Res Commun; 2003 Jul; 307(1):172-9. PubMed ID: 12849997
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Selective targeting of the conserved active site cysteine of Mycobacterium tuberculosis methionine aminopeptidase with electrophilic reagents.
    Reddi R; Arya T; Kishor C; Gumpena R; Ganji RJ; Bhukya S; Addlagatta A
    FEBS J; 2014 Sep; 281(18):4240-8. PubMed ID: 24841365
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The anti-angiogenic agent fumagillin covalently binds and inhibits the methionine aminopeptidase, MetAP-2.
    Sin N; Meng L; Wang MQ; Wen JJ; Bornmann WG; Crews CM
    Proc Natl Acad Sci U S A; 1997 Jun; 94(12):6099-103. PubMed ID: 9177176
    [TBL] [Abstract][Full Text] [Related]  

  • 60. N-Terminal methionine processing by the zinc-activated Plasmodium falciparum methionine aminopeptidase 1b.
    Calcagno S; Klein CD
    Appl Microbiol Biotechnol; 2016 Aug; 100(16):7091-102. PubMed ID: 27023914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.