These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 38103130)
21. BiRWDDA: A Novel Drug Repositioning Method Based on Multisimilarity Fusion. Yan CK; Wang WX; Zhang G; Wang JL; Patel A J Comput Biol; 2019 Nov; 26(11):1230-1242. PubMed ID: 31140857 [No Abstract] [Full Text] [Related]
22. A weighted bilinear neural collaborative filtering approach for drug repositioning. Meng Y; Lu C; Jin M; Xu J; Zeng X; Yang J Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35039838 [TBL] [Abstract][Full Text] [Related]
23. Partner-Specific Drug Repositioning Approach Based on Graph Convolutional Network. Sun X; Wang B; Zhang J; Li M IEEE J Biomed Health Inform; 2022 Nov; 26(11):5757-5765. PubMed ID: 35921345 [TBL] [Abstract][Full Text] [Related]
24. HINGRL: predicting drug-disease associations with graph representation learning on heterogeneous information networks. Zhao BW; Hu L; You ZH; Wang L; Su XR Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34891172 [TBL] [Abstract][Full Text] [Related]
25. Computational drug repositioning with attention walking. Park JH; Cho YR Sci Rep; 2024 May; 14(1):10072. PubMed ID: 38698208 [TBL] [Abstract][Full Text] [Related]
26. DRTerHGAT: A drug repurposing method based on the ternary heterogeneous graph attention network. He H; Xie J; Huang D; Zhang M; Zhao X; Ying Y; Wang J J Mol Graph Model; 2024 Jul; 130():108783. PubMed ID: 38677034 [TBL] [Abstract][Full Text] [Related]
27. CNNDLP: A Method Based on Convolutional Autoencoder and Convolutional Neural Network with Adjacent Edge Attention for Predicting lncRNA-Disease Associations. Xuan P; Sheng N; Zhang T; Liu Y; Guo Y Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31480319 [TBL] [Abstract][Full Text] [Related]
28. Integration of Neighbor Topologies Based on Meta-Paths and Node Attributes for Predicting Drug-Related Diseases. Xuan P; Lu Z; Zhang T; Liu Y; Nakaguchi T Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409235 [TBL] [Abstract][Full Text] [Related]
29. In silico drug repositioning based on the integration of chemical, genomic and pharmacological spaces. Chen H; Zhang Z; Zhang J BMC Bioinformatics; 2021 Feb; 22(1):52. PubMed ID: 33557749 [TBL] [Abstract][Full Text] [Related]
30. Computational drug repositioning using low-rank matrix approximation and randomized algorithms. Luo H; Li M; Wang S; Liu Q; Li Y; Wang J Bioinformatics; 2018 Jun; 34(11):1904-1912. PubMed ID: 29365057 [TBL] [Abstract][Full Text] [Related]
31. Tripartite Network-Based Repurposing Method Using Deep Learning to Compute Similarities for Drug-Target Prediction. Zong N; Wong RSN; Ngo V Methods Mol Biol; 2019; 1903():317-328. PubMed ID: 30547451 [TBL] [Abstract][Full Text] [Related]
32. GIAE-DTI: Predicting Drug-Target Interactions Based on Heterogeneous Network and GIN-based Graph Autoencoder. Wang M; Lei X; Liu L; Chen J; Wu FX IEEE J Biomed Health Inform; 2024 Sep; PP():. PubMed ID: 39259623 [TBL] [Abstract][Full Text] [Related]
33. Drug Repositioning Based on the Enhanced Message Passing and Hypergraph Convolutional Networks. Huang W; Li Z; Kang Y; Ye X; Feng W Biomolecules; 2022 Nov; 12(11):. PubMed ID: 36359016 [TBL] [Abstract][Full Text] [Related]
34. Predicting miRNA-Disease Associations Through Deep Autoencoder With Multiple Kernel Learning. Zhou F; Yin MM; Jiao CN; Zhao JX; Zheng CH; Liu JX IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5570-5579. PubMed ID: 34860656 [TBL] [Abstract][Full Text] [Related]
35. In silico drug repositioning using deep learning and comprehensive similarity measures. Yi HC; You ZH; Wang L; Su XR; Zhou X; Jiang TH BMC Bioinformatics; 2021 Jun; 22(Suppl 3):293. PubMed ID: 34074242 [TBL] [Abstract][Full Text] [Related]
36. Drug Repurposing Using Deep Embeddings of Gene Expression Profiles. Donner Y; Kazmierczak S; Fortney K Mol Pharm; 2018 Oct; 15(10):4314-4325. PubMed ID: 30001141 [TBL] [Abstract][Full Text] [Related]
37. DLDTI: a learning-based framework for drug-target interaction identification using neural networks and network representation. Zhao Y; Zheng K; Guan B; Guo M; Song L; Gao J; Qu H; Wang Y; Shi D; Zhang Y J Transl Med; 2020 Nov; 18(1):434. PubMed ID: 33187537 [TBL] [Abstract][Full Text] [Related]
38. Inferring new indications for approved drugs via random walk on drug-disease heterogenous networks. Liu H; Song Y; Guan J; Luo L; Zhuang Z BMC Bioinformatics; 2016 Dec; 17(Suppl 17):539. PubMed ID: 28155639 [TBL] [Abstract][Full Text] [Related]
39. Graph Convolutional Autoencoder and Fully-Connected Autoencoder with Attention Mechanism Based Method for Predicting Drug-Disease Associations. Xuan P; Gao L; Sheng N; Zhang T; Nakaguchi T IEEE J Biomed Health Inform; 2021 May; 25(5):1793-1804. PubMed ID: 33216722 [TBL] [Abstract][Full Text] [Related]
40. AE-RW: Predicting miRNA-disease associations by using autoencoder and random walk on miRNA-gene-disease heterogeneous network. Lu P; Jiang J Comput Biol Chem; 2024 Jun; 110():108085. PubMed ID: 38754260 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]