BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 38103425)

  • 21. Assessing metal extraction from metalliferous waste: A study using deep eutectic solvents and chelating agents vs. ethylenediaminetetraacetic acid.
    Huntington VE; Coulon F; Wagland ST
    J Environ Manage; 2024 Jul; 363():121350. PubMed ID: 38850901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Natural and recyclable alginate hydrogels as extracting media for recovering valuable metals of spent lithium-ion batteries from a deep eutectic solvent.
    Wang Y; Goikolea E; Ruiz de Larramendi I; Reyes E; Lanceros-Méndez S; Zhang Q
    Waste Manag; 2023 Sep; 171():271-280. PubMed ID: 37688930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A sustainable process for metal recycling from spent lithium-ion batteries using ammonium chloride.
    Lv W; Wang Z; Cao H; Zheng X; Jin W; Zhang Y; Sun Z
    Waste Manag; 2018 Sep; 79():545-553. PubMed ID: 30343786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-efficiency selective leaching of valuable metals from spent lithium-ion batteries: Effects of Na
    Hu Q; Luo Z; Zhou H; Cao Z
    Waste Manag; 2023 Jul; 167():204-212. PubMed ID: 37269584
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sustainable recovery of valuable metals from spent lithium-ion batteries using DL-malic acid: Leaching and kinetics aspect.
    Sun C; Xu L; Chen X; Qiu T; Zhou T
    Waste Manag Res; 2018 Feb; 36(2):113-120. PubMed ID: 29212425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recovery methods and regulation status of waste lithium-ion batteries in China: A mini review.
    Siqi Z; Guangming L; Wenzhi H; Juwen H; Haochen Z
    Waste Manag Res; 2019 Nov; 37(11):1142-1152. PubMed ID: 31244410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability.
    Roy JJ; Rarotra S; Krikstolaityte V; Zhuoran KW; Cindy YD; Tan XY; Carboni M; Meyer D; Yan Q; Srinivasan M
    Adv Mater; 2022 Jun; 34(25):e2103346. PubMed ID: 34632652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-Selectivity Recycling of Valuable Metals from Spent Lithium-Ion Batteries Using Recyclable Deep Eutectic Solvents.
    Zhang Y; Wang F; Zhang W; Ren S; Hou Y; Wu W
    ChemSusChem; 2024 May; 17(9):e202301774. PubMed ID: 38197219
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts.
    Wang S; Wang C; Lai F; Yan F; Zhang Z
    Waste Manag; 2020 Feb; 102():122-130. PubMed ID: 31671359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sequential separation of critical metals from lithium-ion batteries based on deep eutectic solvent and electrodeposition.
    Cheng J; Zheng C; Xu K; Zhu Y; Song Y; Jing C
    J Hazard Mater; 2024 Mar; 465():133157. PubMed ID: 38064943
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ternary Deep Eutectic Solvent (DES) with a Regulated Rate-Determining Step for Efficient Recycling of Lithium Cobalt Oxide.
    Huang F; Li T; Yan X; Xiong Y; Zhang X; Lu S; An N; Huang W; Guo Q; Ge X
    ACS Omega; 2022 Apr; 7(13):11452-11459. PubMed ID: 35415356
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A highly efficient process to enhance the bioleaching of spent lithium-ion batteries by bifunctional pyrite combined with elemental sulfur.
    Liu Z; Liao X; Zhang Y; Li S; Ye M; Gan Q; Fang X; Mo Z; Huang Y; Liang Z; Dai W; Sun S
    J Environ Manage; 2024 Feb; 351():119954. PubMed ID: 38169252
    [TBL] [Abstract][Full Text] [Related]  

  • 33. One-step selective separation and efficient recovery of valuable metals from mixed spent lithium batteries in the phosphoric acid system.
    Zhou X; Yang W; Liu X; Tang J; Su F; Li Z; Yang J; Ma Y
    Waste Manag; 2023 Jan; 155():53-64. PubMed ID: 36343600
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects.
    Meshram P; Pandey BD; Mankhand TR
    Waste Manag; 2015 Nov; 45():306-13. PubMed ID: 26087645
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct Electrochemical Leaching Method for High-Purity Lithium Recovery from Spent Lithium Batteries.
    Yang L; Gao Z; Liu T; Huang M; Liu G; Feng Y; Shao P; Luo X
    Environ Sci Technol; 2023 Mar; 57(11):4591-4597. PubMed ID: 36881640
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process.
    Wang MM; Zhang CC; Zhang FS
    Waste Manag; 2017 Sep; 67():232-239. PubMed ID: 28502601
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media.
    Chen X; Zhou T
    Waste Manag Res; 2014 Nov; 32(11):1083-93. PubMed ID: 25378255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cathode Active Material Recycling from Spent Lithium Batteries: A Green (Circular) Approach Based on Deep Eutectic Solvents.
    Morina R; Callegari D; Merli D; Alberti G; Mustarelli P; Quartarone E
    ChemSusChem; 2022 Jan; 15(2):e202102080. PubMed ID: 34779575
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Subcritical Water Extraction of Valuable Metals from Spent Lithium-Ion Batteries.
    Lie J; Tanda S; Liu JC
    Molecules; 2020 May; 25(9):. PubMed ID: 32384592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium.
    Chen X; Cao L; Kang D; Li J; Zhou T; Ma H
    Waste Manag; 2018 Oct; 80():198-210. PubMed ID: 30455000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.