These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38103441)

  • 1. Enhancing interpretability and generalizability of deep learning-based emulator in three-dimensional lake hydrodynamics using Koopman operator and transfer learning: Demonstrated on the example of lake Zurich.
    Tian W; Zhang Z; Bouffard D; Wu H; Xin K; Gu X; Liao Z
    Water Res; 2024 Feb; 249():120996. PubMed ID: 38103441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meteolakes: An operational online three-dimensional forecasting platform for lake hydrodynamics.
    Baracchini T; Wüest A; Bouffard D
    Water Res; 2020 Apr; 172():115529. PubMed ID: 32006775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emulator-Based Bayesian Calibration of the CISNET Colorectal Cancer Models.
    Pineda-Antunez C; Seguin C; van Duuren LA; Knudsen AB; Davidi B; Nascimento de Lima P; Rutter C; Kuntz KM; Lansdorp-Vogelaar I; Collier N; Ozik J; Alarid-Escudero F
    Med Decis Making; 2024 Jul; 44(5):543-553. PubMed ID: 38858832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Operator learning for urban water clarification hydrodynamics and particulate matter transport with physics-informed neural networks.
    Li H; Shatarah M
    Water Res; 2024 Mar; 251():121123. PubMed ID: 38241806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of waste water in Erhai Lake based on MIKE21 hydrodynamic and water quality model.
    Zhu C; Liang Q; Yan F; Hao W
    ScientificWorldJournal; 2013; 2013():958506. PubMed ID: 23997684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control.
    Brunton SL; Brunton BW; Proctor JL; Kutz JN
    PLoS One; 2016; 11(2):e0150171. PubMed ID: 26919740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Online Learning Koopman Operator for Closed-Loop Electrical Neurostimulation in Epilepsy.
    Liang Z; Luo Z; Liu K; Qiu J; Liu Q
    IEEE J Biomed Health Inform; 2023 Jan; 27(1):492-503. PubMed ID: 36170412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic and water quality modeling of a large floodplain lake (Poyang Lake) in China.
    Li B; Yang G; Wan R; Li H
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):35084-35098. PubMed ID: 30328037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gaussian process emulation of spatio-temporal outputs of a 2D inland flood model.
    Donnelly J; Abolfathi S; Pearson J; Chatrabgoun O; Daneshkhah A
    Water Res; 2022 Oct; 225():119100. PubMed ID: 36155010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extended Dynamic Mode Decomposition with Invertible Dictionary Learning.
    Jin Y; Hou L; Zhong S
    Neural Netw; 2024 May; 173():106177. PubMed ID: 38382398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calibration and Validation of the Colorectal Cancer and Adenoma Incidence and Mortality (CRC-AIM) Microsimulation Model Using Deep Neural Networks.
    Vahdat V; Alagoz O; Chen JV; Saoud L; Borah BJ; Limburg PJ
    Med Decis Making; 2023 Aug; 43(6):719-736. PubMed ID: 37434445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamics and water quality of the Hongze Lake in response to human activities.
    Liu B; Cai S; Wang H; Cui C; Cao X
    Environ Sci Pollut Res Int; 2021 Sep; 28(34):46215-46232. PubMed ID: 33608781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning for Koopman Operator Optimal Control.
    Al-Gabalawy M
    ISA Trans; 2021 Jan; ():. PubMed ID: 33431116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Algal bloom forecasting with time-frequency analysis: A hybrid deep learning approach.
    Liu M; He J; Huang Y; Tang T; Hu J; Xiao X
    Water Res; 2022 Jul; 219():118591. PubMed ID: 35598469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-driven modelling of brain activity using neural networks, diffusion maps, and the Koopman operator.
    Gallos IK; Lehmberg D; Dietrich F; Siettos C
    Chaos; 2024 Jan; 34(1):. PubMed ID: 38285718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lake water-level fluctuation forecasting using machine learning models: a systematic review.
    Zhu S; Lu H; Ptak M; Dai J; Ji Q
    Environ Sci Pollut Res Int; 2020 Dec; 27(36):44807-44819. PubMed ID: 32978734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional hydrodynamic and water quality model for TMDL development of Lake Fuxian, China.
    Zhao L; Zhang X; Liu Y; He B; Zhu X; Zou R; Zhu Y
    J Environ Sci (China); 2012; 24(8):1355-63. PubMed ID: 23513675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Koopman-Based MPC With Learned Dynamics: Hierarchical Neural Network Approach.
    Wang M; Lou X; Wu W; Cui B
    IEEE Trans Neural Netw Learn Syst; 2024 Mar; 35(3):3630-3639. PubMed ID: 35969545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the potential impact of glacial lake outburst floods on individual objects using a high-performance hydrodynamic model and open-source data.
    Chen H; Zhao J; Liang Q; Maharjan SB; Joshi SP
    Sci Total Environ; 2022 Feb; 806(Pt 3):151289. PubMed ID: 34717994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.