BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38103461)

  • 1. Growth requirement for methionine in human melanoma-derived cell lines with different levels of MMACHC expression and methylation.
    Bauer WG; Watkins D; Zacharias C; Gilfix BM; Rosenblatt DS
    Mol Genet Metab; 2024 Jan; 141(1):108111. PubMed ID: 38103461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic modification of the gene for the vitamin B(12) chaperone MMACHC can result in increased tumorigenicity and methionine dependence.
    Loewy AD; Niles KM; Anastasio N; Watkins D; Lavoie J; Lerner-Ellis JP; Pastinen T; Trasler JM; Rosenblatt DS
    Mol Genet Metab; 2009 Apr; 96(4):261-7. PubMed ID: 19200761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methionine dependence in tumor cells: The potential role of cobalamin and MMACHC.
    Sorin M; Watkins D; Gilfix BM; Rosenblatt DS
    Mol Genet Metab; 2021 Mar; 132(3):155-161. PubMed ID: 33487542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and reversion of methionine dependence in a human glioma cell line: relation to homocysteine remethylation and cobalamin status.
    Fiskerstrand T; Christensen B; Tysnes OB; Ueland PM; Refsum H
    Cancer Res; 1994 Sep; 54(18):4899-906. PubMed ID: 8069855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in cobalamin metabolism are associated with the altered methionine auxotrophy of highly growth autonomous human melanoma cells.
    Liteplo RG; Hipwell SE; Rosenblatt DS; Sillaots S; Lue-Shing H
    J Cell Physiol; 1991 Nov; 149(2):332-8. PubMed ID: 1748723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic, epigenetic and genomic mechanisms of methionine dependency of cancer and tumor-initiating cells: What could we learn from folate and methionine cycles.
    Guéant JL; Oussalah A; Zgheib R; Siblini Y; Hsu SB; Namour F
    Biochimie; 2020 Jun; 173():123-128. PubMed ID: 32289469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cobalamin metabolism in methionine-dependent human tumour and leukemia cell lines.
    Watkins D
    Clin Invest Med; 1998 Jun; 21(3):151-8. PubMed ID: 9627769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human B
    Mascarenhas R; Gouda H; Ruetz M; Banerjee R
    Methods Enzymol; 2022; 668():309-326. PubMed ID: 35589199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inherited defects of cobalamin metabolism.
    Watkins D; Rosenblatt DS
    Vitam Horm; 2022; 119():355-376. PubMed ID: 35337626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methionine synthase and methionine synthase reductase interact with MMACHC and with MMADHC.
    Bassila C; Ghemrawi R; Flayac J; Froese DS; Baumgartner MR; Guéant JL; Coelho D
    Biochim Biophys Acta Mol Basis Dis; 2017 Jan; 1863(1):103-112. PubMed ID: 27771510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high frequency and geographical distribution of MMACHC R132* mutation in children with cobalamin C defect.
    Kaur R; Attri SV; Saini AG; Sankhyan N
    Amino Acids; 2021 Feb; 53(2):253-264. PubMed ID: 33515116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of a regulatory system involving cobalamin distribution and function in a methionine-dependent human glioma cell line.
    Fiskerstrand T; Riedel B; Ueland PM; Seetharam B; Pezacka EH; Gulati S; Bose S; Banerjee R; Berge RK; Refsum H
    J Biol Chem; 1998 Aug; 273(32):20180-4. PubMed ID: 9685364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between methionine synthase isoforms and MMACHC: characterization in cblG-variant, cblG and cblC inherited causes of megaloblastic anaemia.
    Fofou-Caillierez MB; Mrabet NT; Chéry C; Dreumont N; Flayac J; Pupavac M; Paoli J; Alberto JM; Coelho D; Camadro JM; Feillet F; Watkins D; Fowler B; Rosenblatt DS; Guéant JL
    Hum Mol Genet; 2013 Nov; 22(22):4591-601. PubMed ID: 23825108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cobalamin-dependent methionine synthase is a modular protein with distinct regions for binding homocysteine, methyltetrahydrofolate, cobalamin, and adenosylmethionine.
    Goulding CW; Postigo D; Matthews RG
    Biochemistry; 1997 Jul; 36(26):8082-91. PubMed ID: 9201956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression profiling of homocysteine junction enzymes in the NCI60 panel of human cancer cell lines.
    Zhang W; Braun A; Bauman Z; Olteanu H; Madzelan P; Banerjee R
    Cancer Res; 2005 Feb; 65(4):1554-60. PubMed ID: 15735045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methionine auxotrophy in inborn errors of cobalamin metabolism.
    Garovic-Kocic V; Rosenblatt DS
    Clin Invest Med; 1992 Aug; 15(4):395-400. PubMed ID: 1516297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rescue of Methionine Dependence by Cobalamin in a Human Colorectal Cancer Cell Line.
    Garg S; Miousse IR
    Nutrients; 2024 Mar; 16(7):. PubMed ID: 38613029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered methionine metabolism in metastatic variants of a human melanoma cell line.
    Liteplo RG
    Cancer Lett; 1989 Jan; 44(1):23-31. PubMed ID: 2917339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation and utilization of methionine by rat liver cells in culture.
    Wilson MJ; Myasishcheva NV; Stoner GD; Poirier LA
    In Vitro; 1983 Feb; 19(2):134-40. PubMed ID: 6826197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversion to a homocysteine-responsive phenotype in a human melanoma cell line is associated with diminished growth potential and increased methionine biosynthesis.
    Liteplo RG
    Exp Cell Res; 1990 Feb; 186(2):340-5. PubMed ID: 2298245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.