BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38103561)

  • 1. Transcriptional reprogramming at the intersection of the heat shock response and proteostasis.
    Pessa JC; Joutsen J; Sistonen L
    Mol Cell; 2024 Jan; 84(1):80-93. PubMed ID: 38103561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring of Proteostasis Networks with Heat Shock Factors.
    Joutsen J; Sistonen L
    Cold Spring Harb Perspect Biol; 2019 Apr; 11(4):. PubMed ID: 30420555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of HSF1 transcriptional complexes under proteotoxic stress: Mechanisms of heat shock gene transcription involve the stress-induced HSF1 complex formation, changes in chromatin states, and formation of phase-separated condensates: Mechanisms of heat shock gene transcription involve the stress-induced HSF1 complex formation, changes in chromatin states, and formation of phase-separated condensates.
    Fujimoto M; Takii R; Nakai A
    Bioessays; 2023 Jul; 45(7):e2300036. PubMed ID: 37092382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells.
    Vihervaara A; Sergelius C; Vasara J; Blom MA; Elsing AN; Roos-Mattjus P; Sistonen L
    Proc Natl Acad Sci U S A; 2013 Sep; 110(36):E3388-97. PubMed ID: 23959860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of Hsf1 and the Heat Shock Response.
    Pincus D
    Adv Exp Med Biol; 2020; 1243():41-50. PubMed ID: 32297210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring of the Heat Shock Response with a Real-Time Luciferase Reporter.
    Ackerman A; Kijima T; Eguchi T; Prince TL
    Methods Mol Biol; 2023; 2693():1-11. PubMed ID: 37540422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deletion of the transcription factors Hsf1, Msn2 and Msn4 in yeast uncovers transcriptional reprogramming in response to proteotoxic stress.
    Mühlhofer M; Offensperger F; Reschke S; Wallmann G; Csaba G; Berchtold E; Riedl M; Blum H; Haslbeck M; Zimmer R; Buchner J
    FEBS Lett; 2024 Mar; 598(6):635-657. PubMed ID: 38366111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(ADP-Ribose) Polymerase 1 Promotes the Human Heat Shock Response by Facilitating Heat Shock Transcription Factor 1 Binding to DNA.
    Fujimoto M; Takii R; Katiyar A; Srivastava P; Nakai A
    Mol Cell Biol; 2018 Jul; 38(13):. PubMed ID: 29661921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response.
    Lang BJ; Guerrero ME; Prince TL; Okusha Y; Bonorino C; Calderwood SK
    Arch Toxicol; 2021 Jun; 95(6):1943-1970. PubMed ID: 34003342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic and epigenetic determinants establish a continuum of Hsf1 occupancy and activity across the yeast genome.
    Pincus D; Anandhakumar J; Thiru P; Guertin MJ; Erkine AM; Gross DS
    Mol Biol Cell; 2018 Dec; 29(26):3168-3182. PubMed ID: 30332327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hsf1 on a leash - controlling the heat shock response by chaperone titration.
    Masser AE; Ciccarelli M; Andréasson C
    Exp Cell Res; 2020 Nov; 396(1):112246. PubMed ID: 32861670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SUMOylation and the HSF1-Regulated Chaperone Network Converge to Promote Proteostasis in Response to Heat Shock.
    Liebelt F; Sebastian RM; Moore CL; Mulder MPC; Ovaa H; Shoulders MD; Vertegaal ACO
    Cell Rep; 2019 Jan; 26(1):236-249.e4. PubMed ID: 30605679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HSF1Base: A Comprehensive Database of HSF1 (Heat Shock Factor 1) Target Genes.
    Kovács D; Sigmond T; Hotzi B; Bohár B; Fazekas D; Deák V; Vellai T; Barna J
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31752429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: from proteomic stability to oncogenesis.
    Dai C
    Philos Trans R Soc Lond B Biol Sci; 2018 Jan; 373(1738):. PubMed ID: 29203710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks.
    Fragkostefanakis S; Röth S; Schleiff E; Scharf KD
    Plant Cell Environ; 2015 Sep; 38(9):1881-95. PubMed ID: 24995670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into transcriptional reprogramming during cellular stress.
    Himanen SV; Sistonen L
    J Cell Sci; 2019 Nov; 132(21):. PubMed ID: 31676663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HSFs drive transcription of distinct genes and enhancers during oxidative stress and heat shock.
    Himanen SV; Puustinen MC; Da Silva AJ; Vihervaara A; Sistonen L
    Nucleic Acids Res; 2022 Jun; 50(11):6102-6115. PubMed ID: 35687139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HSF1-dependent and -independent regulation of the mammalian in vivo heat shock response and its impairment in Huntington's disease mouse models.
    Neueder A; Gipson TA; Batterton S; Lazell HJ; Farshim PP; Paganetti P; Housman DE; Bates GP
    Sci Rep; 2017 Oct; 7(1):12556. PubMed ID: 28970536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Important Role for RPRD1B in the Heat Shock Response.
    Cugusi S; Bajpe PK; Mitter R; Patel H; Stewart A; Svejstrup JQ
    Mol Cell Biol; 2022 Oct; 42(10):e0017322. PubMed ID: 36121223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The homeodomain-interacting protein kinase HPK-1 preserves protein homeostasis and longevity through master regulatory control of the HSF-1 chaperone network and TORC1-restricted autophagy in Caenorhabditis elegans.
    Das R; Melo JA; Thondamal M; Morton EA; Cornwell AB; Crick B; Kim JH; Swartz EW; Lamitina T; Douglas PM; Samuelson AV
    PLoS Genet; 2017 Oct; 13(10):e1007038. PubMed ID: 29036198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.