These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38103675)

  • 1. Cryo-EM structure of a 16.5-kDa small heat-shock protein from Methanocaldococcus jannaschii.
    Lee J; Ryu B; Kim T; Kim KK
    Int J Biol Macromol; 2024 Feb; 258(Pt 1):128763. PubMed ID: 38103675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural model of dodecameric heat-shock protein Hsp21: Flexible N-terminal arms interact with client proteins while C-terminal tails maintain the dodecamer and chaperone activity.
    Rutsdottir G; Härmark J; Weide Y; Hebert H; Rasmussen MI; Wernersson S; Respondek M; Akke M; Højrup P; Koeck PJB; Söderberg CAG; Emanuelsson C
    J Biol Chem; 2017 May; 292(19):8103-8121. PubMed ID: 28325834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate binding site flexibility of the small heat shock protein molecular chaperones.
    Jaya N; Garcia V; Vierling E
    Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15604-9. PubMed ID: 19717454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of substrate recognition and thermal protection by a small heat shock protein.
    Yu C; Leung SKP; Zhang W; Lai LTF; Chan YK; Wong MC; Benlekbir S; Cui Y; Jiang L; Lau WCY
    Nat Commun; 2021 May; 12(1):3007. PubMed ID: 34021140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small heat-shock protein structures reveal a continuum from symmetric to variable assemblies.
    Haley DA; Bova MP; Huang QL; Mchaourab HS; Stewart PL
    J Mol Biol; 2000 Apr; 298(2):261-72. PubMed ID: 10764595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dodecameric structure of a small heat shock protein from Mycobacterium marinum M.
    Bhandari S; Biswas S; Chaudhary A; Dutta S; Suguna K
    Proteins; 2019 May; 87(5):365-379. PubMed ID: 30632633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wrapping the alpha-crystallin domain fold in a chaperone assembly.
    Stamler R; Kappé G; Boelens W; Slingsby C
    J Mol Biol; 2005 Oct; 353(1):68-79. PubMed ID: 16165157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional properties of proteins interacting with small heat shock proteins.
    Dabbaghizadeh A; Tanguay RM
    Cell Stress Chaperones; 2020 Jul; 25(4):629-637. PubMed ID: 32314314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of an activated variant of small heat shock protein Hsp16.5.
    McHaourab HS; Lin YL; Spiller BW
    Biochemistry; 2012 Jun; 51(25):5105-12. PubMed ID: 22670769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AgsA oligomer acts as a functional unit.
    Liu D; Chen Q; Zhang L; Hu H; Yin C
    Biochem Biophys Res Commun; 2020 Sep; 530(1):22-28. PubMed ID: 32828289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific sequences in the N-terminal domain of human small heat-shock protein HSPB6 dictate preferential hetero-oligomerization with the orthologue HSPB1.
    Heirbaut M; Lermyte F; Martin EM; Beelen S; Sobott F; Strelkov SV; Weeks SD
    J Biol Chem; 2017 Jun; 292(24):9944-9957. PubMed ID: 28487364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural dynamics of archaeal small heat shock proteins.
    Haslbeck M; Kastenmüller A; Buchner J; Weinkauf S; Braun N
    J Mol Biol; 2008 Apr; 378(2):362-74. PubMed ID: 18353362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Cryo-EM structure of the CorA channel from Methanocaldococcus jannaschii in low magnesium conditions.
    Cleverley RM; Kean J; Shintre CA; Baldock C; Derrick JP; Ford RC; Prince SM
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2206-15. PubMed ID: 26051127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small heat shock proteins: molecular structure and chaperone function.
    Sun Y; MacRae TH
    Cell Mol Life Sci; 2005 Nov; 62(21):2460-76. PubMed ID: 16143830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple nanocages of a cyanophage small heat shock protein with icosahedral and octahedral symmetries.
    Biswas S; Garg P; Dutta S; Suguna K
    Sci Rep; 2021 Oct; 11(1):21023. PubMed ID: 34697325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of non-toxic Aβ fibrils by small heat shock protein under heat-stress conditions.
    Sakono M; Utsumi A; Zako T; Abe T; Yohda M; Maeda M
    Biochem Biophys Res Commun; 2013 Jan; 430(4):1259-64. PubMed ID: 23261462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multilevel structural characteristics for the natural substrate proteins of bacterial small heat shock proteins.
    Fu X; Chang Z; Shi X; Bu D; Wang C
    Protein Sci; 2014 Feb; 23(2):229-37. PubMed ID: 24318917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity.
    Basha E; Friedrich KL; Vierling E
    J Biol Chem; 2006 Dec; 281(52):39943-52. PubMed ID: 17090542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Diverse Functions of Small Heat Shock Proteins in the Proteostasis Network.
    Reinle K; Mogk A; Bukau B
    J Mol Biol; 2022 Jan; 434(1):167157. PubMed ID: 34271010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An unusual dimeric small heat shock protein provides insight into the mechanism of this class of chaperones.
    Basha E; Jones C; Blackwell AE; Cheng G; Waters ER; Samsel KA; Siddique M; Pett V; Wysocki V; Vierling E
    J Mol Biol; 2013 May; 425(10):1683-96. PubMed ID: 23416558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.