BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38103781)

  • 1. Micropollutant rejection by nanofiltration membranes: A mini review dedicated to the critical factors and modelling prediction.
    Xu R; Zhang Z; Deng C; Nie C; Wang L; Shi W; Lyu T; Yang Q
    Environ Res; 2024 Mar; 244():117935. PubMed ID: 38103781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of emerging organic micropollutants via modified-reverse osmosis/nanofiltration membranes: A review.
    Khoo YS; Goh PS; Lau WJ; Ismail AF; Abdullah MS; Mohd Ghazali NH; Yahaya NKEM; Hashim N; Othman AR; Mohammed A; Kerisnan NDA; Mohamed Yusoff MA; Fazlin Hashim NH; Karim J; Abdullah NS
    Chemosphere; 2022 Oct; 305():135151. PubMed ID: 35654232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tradeoff between micropollutant abatement and bromate formation during ozonation of concentrates from nanofiltration and reverse osmosis processes.
    Wünsch R; Hettich T; Prahtel M; Thomann M; Wintgens T; von Gunten U
    Water Res; 2022 Aug; 221():118785. PubMed ID: 35949072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications.
    Xu P; Drewes JE; Bellona C; Amy G; Kim TU; Adam M; Heberer T
    Water Environ Res; 2005; 77(1):40-8. PubMed ID: 15765934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A QSAR model for predicting rejection of emerging contaminants (pharmaceuticals, endocrine disruptors) by nanofiltration membranes.
    Yangali-Quintanilla V; Sadmani A; McConville M; Kennedy M; Amy G
    Water Res; 2010 Jan; 44(2):373-84. PubMed ID: 19616272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling micropollutant removal by nanofiltration and reverse osmosis membranes: considerations and challenges.
    Castaño Osorio S; Biesheuvel PM; Spruijt E; Dykstra JE; van der Wal A
    Water Res; 2022 Oct; 225():119130. PubMed ID: 36240724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boosting the Performance of Nanofiltration Membranes in Removing Organic Micropollutants: Trade-Off Effect, Strategy Evaluation, and Prospective Development.
    Liu Y; Wang K; Zhou Z; Wei X; Xia S; Wang XM; Xie YF; Huang X
    Environ Sci Technol; 2022 Nov; 56(22):15220-15237. PubMed ID: 36330774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes.
    Yoon J; Amy G; Chung J; Sohn J; Yoon Y
    Chemosphere; 2009 Sep; 77(2):228-35. PubMed ID: 19679331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of antibiotics and estrogens by nanofiltration and reverse osmosis membranes.
    Yang L; Xia C; Jiang J; Chen X; Zhou Y; Yuan C; Bai L; Meng S; Cao G
    J Hazard Mater; 2024 Jan; 461():132628. PubMed ID: 37783143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting micropollutant removal through nanopore-sized membranes using several machine-learning approaches based on feature engineering.
    Yogarathinam LT; Abba SI; Usman J; Lawal DU; Aljundi IH
    RSC Adv; 2024 Jun; 14(27):19331-19348. PubMed ID: 38887641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanofiltration as tertiary treatment method for removing trace pharmaceutically active compounds in wastewater from wastewater treatment plants.
    Garcia-Ivars J; Martella L; Massella M; Carbonell-Alcaina C; Alcaina-Miranda MI; Iborra-Clar MI
    Water Res; 2017 Nov; 125():360-373. PubMed ID: 28881212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fit-for-Purpose Design of Nanofiltration Membranes for Simultaneous Nutrient Recovery and Micropollutant Removal.
    Zhao Y; Tong X; Chen Y
    Environ Sci Technol; 2021 Mar; 55(5):3352-3361. PubMed ID: 33596060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced micropollutants removal by nanofiltration and their environmental risks in wastewater reclamation: A pilot-scale study.
    Xu R; Qin W; Tian Z; He Y; Wang X; Wen X
    Sci Total Environ; 2020 Nov; 744():140954. PubMed ID: 32755784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of haloacetic acids from swimming pool water by reverse osmosis and nanofiltration.
    Yang L; She Q; Wan MP; Wang R; Chang VW; Tang CY
    Water Res; 2017 Jun; 116():116-125. PubMed ID: 28324708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding Rejection Mechanisms of Trace Organic Contaminants by Polyamide Membranes via Data-Knowledge Codriven Machine Learning.
    Wang H; Zeng J; Dai R; Wang Z
    Environ Sci Technol; 2024 Apr; 58(13):5878-5888. PubMed ID: 38498471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of pharmaceuticals and personal care products (PPCPs) and environmental estrogens (EEs) from water using positively charged hollow fiber nanofiltration membrane.
    Wei X; Zhang Q; Cao S; Xu X; Chen Y; Liu L; Yang R; Chen J; Lv B
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):8486-8497. PubMed ID: 33067789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experiments and machine learning-based modeling for haloacetic acids rejection by nanofiltration: Influence of solute properties and operating conditions.
    Wang F; Wang W; Wang H; Zhao Z; Zhou T; Jiang C; Li J; Zhang X; Liang T; Dong W
    Sci Total Environ; 2023 Jul; 883():163610. PubMed ID: 37088392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of micropollutants from water by commercially available nanofiltration membranes.
    Cuhorka J; Wallace E; Mikulášek P
    Sci Total Environ; 2020 Jun; 720():137474. PubMed ID: 32325567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of feed water pH and membrane material on nanofiltration of perfluorohexanoic acid in aqueous solution.
    Zeng C; Tanaka S; Suzuki Y; Fujii S
    Chemosphere; 2017 Sep; 183():599-604. PubMed ID: 28575703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retention of pesticide Endosulfan by nanofiltration: influence of organic matter-pesticide complexation and solute-membrane interactions.
    De Munari A; Semiao AJ; Antizar-Ladislao B
    Water Res; 2013 Jun; 47(10):3484-96. PubMed ID: 23615337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.