BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38104563)

  • 1. Effects of clamping end-tidal CO
    Kish B; Chen JJ; Tong Y
    NMR Biomed; 2024 Jul; 37(7):e5084. PubMed ID: 38104563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling for the effect of arterial-CO
    Golestani AM; Chen JJ
    Neuroimage; 2020 Aug; 216():116874. PubMed ID: 32335260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring the human ventilatory and cerebral blood flow response to CO2: a technical consideration for the end-tidal-to-arterial gas gradient.
    Tymko MM; Hoiland RL; Kuca T; Boulet LM; Tremblay JC; Pinske BK; Williams AM; Foster GE
    J Appl Physiol (1985); 2016 Jan; 120(2):282-96. PubMed ID: 26542522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of respiratory CO2 fluctuations in the resting-state BOLD signal differ between eyes open and eyes closed.
    Peng T; Niazy R; Payne SJ; Wise RG
    Magn Reson Imaging; 2013 Apr; 31(3):336-45. PubMed ID: 22921940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noninvasive optical evaluation of spontaneous low frequency oscillations in cerebral hemodynamics.
    Cheng R; Shang Y; Hayes D; Saha SP; Yu G
    Neuroimage; 2012 Sep; 62(3):1445-54. PubMed ID: 22659481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arterial to end-tidal PCO2 difference varies with different ventilatory conditions during steady state hypercapnia in the rat.
    Tojima H; Kuriyama T; Fukuda Y
    Jpn J Physiol; 1988; 38(4):445-57. PubMed ID: 3148777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping the end-tidal CO2 response function in the resting-state BOLD fMRI signal: spatial specificity, test-retest reliability and effect of fMRI sampling rate.
    Golestani AM; Chang C; Kwinta JB; Khatamian YB; Jean Chen J
    Neuroimage; 2015 Jan; 104():266-77. PubMed ID: 25462695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of chest wall motion and tidal volume responses during CO2 rebreathing.
    Yan S; Sliwinski P; Macklem PT
    J Appl Physiol (1985); 1996 Oct; 81(4):1528-34. PubMed ID: 8904564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concordance of end-tidal carbon dioxide and arterial carbon dioxide in severe traumatic brain injury.
    Lee SW; Hong YS; Han C; Kim SJ; Moon SW; Shin JH; Baek KJ
    J Trauma; 2009 Sep; 67(3):526-30. PubMed ID: 19741395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling between cerebrovascular oscillations and CSF flow fluctuations during wakefulness: An fMRI study.
    Yang HS; Inglis B; Talavage TM; Nair VV; Yao JF; Fitzgerald B; Schwichtenberg AJ; Tong Y
    J Cereb Blood Flow Metab; 2022 Jun; 42(6):1091-1103. PubMed ID: 35037498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between middle cerebral artery blood velocity and end-tidal PCO2 in the hypocapnic-hypercapnic range in humans.
    Ide K; Eliasziw M; Poulin MJ
    J Appl Physiol (1985); 2003 Jul; 95(1):129-37. PubMed ID: 19278048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebral blood flow reactivity to changes in carbon dioxide calculated using end-tidal versus arterial tensions.
    Young WL; Prohovnik I; Ornstein E; Ostapkovich N; Matteo RS
    J Cereb Blood Flow Metab; 1991 Nov; 11(6):1031-5. PubMed ID: 1939381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in end-tidal carbon dioxide and volumetric carbon dioxide as predictors of volume responsiveness in hemodynamically unstable patients.
    Young A; Marik PE; Sibole S; Grooms D; Levitov A
    J Cardiothorac Vasc Anesth; 2013 Aug; 27(4):681-4. PubMed ID: 23182383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing end-tidal CO
    Zvolanek KM; Moia S; Dean JN; Stickland RC; Caballero-Gaudes C; Bright MG
    Neuroimage; 2023 May; 272():120038. PubMed ID: 36958618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-frequency calcium oscillations accompany deoxyhemoglobin oscillations in rat somatosensory cortex.
    Du C; Volkow ND; Koretsky AP; Pan Y
    Proc Natl Acad Sci U S A; 2014 Oct; 111(43):E4677-86. PubMed ID: 25313035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time lag dependent multimodal processing of concurrent fMRI and near-infrared spectroscopy (NIRS) data suggests a global circulatory origin for low-frequency oscillation signals in human brain.
    Tong Y; Frederick BD
    Neuroimage; 2010 Nov; 53(2):553-64. PubMed ID: 20600975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebral hemodynamics during orthostatic stress assessed by nonlinear modeling.
    Mitsis GD; Zhang R; Levine BD; Marmarelis VZ
    J Appl Physiol (1985); 2006 Jul; 101(1):354-66. PubMed ID: 16514006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of end-tidal PCO2 and average alveolar expired PCO2 during positive end-expiratory pressure.
    Breen PH; Mazumdar B; Skinner SC
    Anesth Analg; 1996 Feb; 82(2):368-73. PubMed ID: 8561343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute exercise-related cognitive effects are not attributable to changes in end-tidal CO
    Shoemaker LN; Wilson LC; Lucas SJE; Machado L; Cotter JD
    Eur J Appl Physiol; 2020 Jul; 120(7):1637-1649. PubMed ID: 32476054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regional changes in brain blood flow during severe passive hyperthermia: effects of PaCO2 and extracranial blood flow.
    Bain AR; Smith KJ; Lewis NC; Foster GE; Wildfong KW; Willie CK; Hartley GL; Cheung SS; Ainslie PN
    J Appl Physiol (1985); 2013 Sep; 115(5):653-9. PubMed ID: 23823149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.