BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38104681)

  • 1. Bioadsorbent nanocellulose aerogel efficiency impregnated with spent coffee grounds.
    Ahmad A; Omar KM; Alahmadi AA; Rizg WY; Bairwan RD; Abdul Khalil HPS
    Int J Biol Macromol; 2024 Feb; 258(Pt 1):128746. PubMed ID: 38104681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polydopamine-Modified Cellulose Nanofibril Composite Aerogel: An Effective Dye Adsorbent.
    Huo Y; Liu Y; Yang J; Du H; Qin C; Liu H
    Langmuir; 2022 Apr; 38(14):4164-4174. PubMed ID: 35344350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocellulose and Graphene Oxide Aerogels for Adsorption and Removal Methylene Blue from an Aqueous Environment.
    Nguyen VT; Ha LQ; Nguyen TDL; Ly PH; Nguyen DM; Hoang D
    ACS Omega; 2022 Jan; 7(1):1003-1013. PubMed ID: 35036764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanically Strong, Low Thermal Conductivity and Improved Thermal Stability Polyvinyl Alcohol-Graphene-Nanocellulose Aerogel.
    Wang X; Xie P; Wan K; Miao Y; Liu Z; Li X; Wang C
    Gels; 2021 Oct; 7(4):. PubMed ID: 34698206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose Nanofibril/Carbon Nanomaterial Hybrid Aerogels for Adsorption Removal of Cationic and Anionic Organic Dyes.
    Yu Z; Hu C; Dichiara AB; Jiang W; Gu J
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31963846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose nanofibril-based aerogel derived from sago pith waste and its application on methylene blue removal.
    Beh JH; Lim TH; Lew JH; Lai JC
    Int J Biol Macromol; 2020 Oct; 160():836-845. PubMed ID: 32485260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface modification of spent coffee grounds using phosphoric acid for enhancement of methylene blue adsorption from aqueous solution.
    Akindolie MS; Choi HJ
    Water Sci Technol; 2022 Feb; 85(4):1218-1234. PubMed ID: 35228365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of physicochemical properties of biochar derived from spent coffee grounds and commercial activated carbon on adsorption behavior and mechanisms of strontium ions (Sr
    Shin J; Lee SH; Kim S; Ochir D; Park Y; Kim J; Lee YG; Chon K
    Environ Sci Pollut Res Int; 2021 Aug; 28(30):40623-40632. PubMed ID: 32677012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino-Functionalized Cellulose Nanofiber/Lignosulfonate New Aerogel Adsorbent for the Removal of Dyes and Heavy Metals from Wastewater.
    Elsayed I; Schueneman GT; El-Giar EM; Hassan EB
    Gels; 2023 Feb; 9(2):. PubMed ID: 36826324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of nanocellulose aerogels and Cu-BTC/nanocellulose aerogel composites for adsorption of organic dyes and heavy metal ions.
    Shaheed N; Javanshir S; Esmkhani M; Dekamin MG; Naimi-Jamal MR
    Sci Rep; 2021 Sep; 11(1):18553. PubMed ID: 34535724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel magnetic Fe
    Yuan M; Liu D; Shang S; Song Z; You Q; Huang L; Cui S
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):126634. PubMed ID: 37678684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-free high-adsorption-capacity adsorbent derived from spent coffee grounds for methylene blue.
    Sukhbaatar B; Yoo B; Lim JH
    RSC Adv; 2021 Jan; 11(9):5118-5127. PubMed ID: 35424460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and adsorption performance of functionalization cellulose-based composite aerogel.
    Fan K; Zhang T; Xiao S; He H; Yang J; Qin Z
    Int J Biol Macromol; 2022 Jun; 211():1-14. PubMed ID: 35551949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SCG-Based CNF Aerogels with Oriented and Aligned Porous Structure for Solar Interfacial Desalination.
    Luo X; Zhou L; Zheng R; Zhang H; Wang B; Mei Y; Chen R
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59973-59980. PubMed ID: 38100997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile preparation of 3D regenerated cellulose/graphene oxide composite aerogel with high-efficiency adsorption towards methylene blue.
    Ren F; Li Z; Tan WZ; Liu XH; Sun ZF; Ren PG; Yan DX
    J Colloid Interface Sci; 2018 Dec; 532():58-67. PubMed ID: 30077830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green Preparation of Durian Rind-Based Cellulose Nanofiber and Its Application in Aerogel.
    Xing H; Fei Y; Cheng J; Wang C; Zhang J; Niu C; Fu Q; Cheng J; Lu L
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and Properties of Hybrid Coffee-Cellulose Aerogels from Spent Coffee Grounds.
    Zhang X; Kwek LP; Le DK; Tan MS; Duong HM
    Polymers (Basel); 2019 Nov; 11(12):. PubMed ID: 31779069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly compressible nanocellulose aerogels with a cellular structure for high-performance adsorption of Cu(II).
    Mo L; Tan Y; Shen Y; Zhang S
    Chemosphere; 2022 Mar; 291(Pt 2):132887. PubMed ID: 34785178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured Cellulose-Based Aerogels: Influence of Chemical/Mechanical Cascade Processes on Quality Index for Benchmarking Dye Pollutant Adsorbents in Wastewater Treatment.
    Pirozzi A; Rincón E; Espinosa E; Donsì F; Serrano L
    Gels; 2023 Dec; 9(12):. PubMed ID: 38131944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ growth of HKUST-1 on electrospun polyacrylonitrile nanofibers/regenerated cellulose aerogel for efficient methylene blue adsorption.
    Li X; Wang L; Li S; Yu S; Liu Z; Liu Q; Dong X
    Int J Biol Macromol; 2024 Jun; 274(Pt 2):133381. PubMed ID: 38914404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.