These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 38104684)
1. Gelatin-tyramine addition and low hydrogel density improves cell attachment, migration, and metabolic activity in vitro and tissue response in vivo in enzymatically crosslinkable dextran-hyaluronic acid hydrogels. Hendriks J; Zoetebier B; Larrea CS; Le NXT; Saris DBF; Karperien M Int J Biol Macromol; 2024 Feb; 259(Pt 2):128843. PubMed ID: 38104684 [TBL] [Abstract][Full Text] [Related]
2. Enzymatically crosslinked silk and silk-gelatin hydrogels with tunable gelation kinetics, mechanical properties and bioactivity for cell culture and encapsulation. Hasturk O; Jordan KE; Choi J; Kaplan DL Biomaterials; 2020 Feb; 232():119720. PubMed ID: 31896515 [TBL] [Abstract][Full Text] [Related]
3. Enzymatic conjugation of a bioactive peptide into an injectable hyaluronic acid-tyramine hydrogel system to promote the formation of functional vasculature. Wang LS; Lee F; Lim J; Du C; Wan AC; Lee SS; Kurisawa M Acta Biomater; 2014 Jun; 10(6):2539-50. PubMed ID: 24561710 [TBL] [Abstract][Full Text] [Related]
4. Silk acid-tyramine hydrogels with rapid gelation properties for 3D cell culture. Wang W; Sun Z; Xiao Y; Wang M; Wang J; Guo C Acta Biomater; 2024 Oct; 187():138-148. PubMed ID: 39197566 [TBL] [Abstract][Full Text] [Related]
5. An injectable platelet lysate-hyaluronic acid hydrogel supports cellular activities and induces chondrogenesis of encapsulated mesenchymal stem cells. Jooybar E; Abdekhodaie MJ; Alvi M; Mousavi A; Karperien M; Dijkstra PJ Acta Biomater; 2019 Jan; 83():233-244. PubMed ID: 30366137 [TBL] [Abstract][Full Text] [Related]
6. Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering. Jin R; Teixeira LS; Dijkstra PJ; van Blitterswijk CA; Karperien M; Feijen J Biomaterials; 2010 Apr; 31(11):3103-13. PubMed ID: 20116847 [TBL] [Abstract][Full Text] [Related]
7. In situ photo-crosslinkable hyaluronic acid-based hydrogel embedded with GHK peptide nanofibers for bioactive wound healing. Lee S; Lee SM; Lee SH; Choi WK; Park SJ; Kim DY; Oh SW; Oh J; Cho JY; Lee J; Chien PN; Nam SY; Heo CY; Lee YS; Kwak EA; Chung WJ Acta Biomater; 2023 Dec; 172():159-174. PubMed ID: 37832839 [TBL] [Abstract][Full Text] [Related]
8. Enzyme-mediated tissue adhesive hydrogels for meniscus repair. Kim SH; An YH; Kim HD; Kim K; Lee SH; Yim HG; Kim BG; Hwang NS Int J Biol Macromol; 2018 Apr; 110():479-487. PubMed ID: 29229249 [TBL] [Abstract][Full Text] [Related]
10. Enzyme-mediated hyaluronic acid-tyramine hydrogels for the propagation of human embryonic stem cells in 3D. Xu K; Narayanan K; Lee F; Bae KH; Gao S; Kurisawa M Acta Biomater; 2015 Sep; 24():159-71. PubMed ID: 26112373 [TBL] [Abstract][Full Text] [Related]
11. Enzymatically crosslinked hydrogel based on tyramine modified gelatin and sialylated chitosan. Ding P; Wei Q; Tian N; Ding X; Wang L; Wang B; Okoro OV; Shavandi A; Nie L Biomed Mater; 2022 Nov; 18(1):. PubMed ID: 36322975 [TBL] [Abstract][Full Text] [Related]
12. Gelatin/Hyaluronic Acid Content in Hydrogels Obtained through Blue Light-Induced Gelation Affects Hydrogel Properties and Adipose Stem Cell Behaviors. Sakai S; Ohi H; Taya M Biomolecules; 2019 Aug; 9(8):. PubMed ID: 31387235 [TBL] [Abstract][Full Text] [Related]
13. Impact of immobilizing of low molecular weight hyaluronic acid within gelatin-based hydrogel through enzymatic reaction on behavior of enclosed endothelial cells. Khanmohammadi M; Sakai S; Taya M Int J Biol Macromol; 2017 Apr; 97():308-316. PubMed ID: 28089929 [TBL] [Abstract][Full Text] [Related]
14. Enzyme-mediated fast in situ formation of hydrogels from dextran-tyramine conjugates. Jin R; Hiemstra C; Zhong Z; Feijen J Biomaterials; 2007 Jun; 28(18):2791-800. PubMed ID: 17379300 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and evaluation of injectable, in situ crosslinkable synthetic extracellular matrices for tissue engineering. Shu XZ; Ahmad S; Liu Y; Prestwich GD J Biomed Mater Res A; 2006 Dec; 79(4):902-12. PubMed ID: 16941590 [TBL] [Abstract][Full Text] [Related]
16. Injectable Hydrogels Based on Hyaluronic Acid and Gelatin Combined with Salvianolic Acid B and Vascular Endothelial Growth Factor for Treatment of Traumatic Brain Injury in Mice. Zhou G; Cao Y; Yan Y; Xu H; Zhang X; Yan T; Wan H Molecules; 2024 Apr; 29(8):. PubMed ID: 38675525 [TBL] [Abstract][Full Text] [Related]
17. Coaxial Bioprinting of Enzymatically Crosslinkable Hyaluronic Acid-Tyramine Bioinks for Tissue Regeneration. Banigo AT; Nauta L; Zoetebier B; Karperien M Polymers (Basel); 2024 Aug; 16(17):. PubMed ID: 39274103 [TBL] [Abstract][Full Text] [Related]
18. Dual-crosslinked methylcellulose hydrogels for 3D bioprinting applications. Shin JY; Yeo YH; Jeong JE; Park SA; Park WH Carbohydr Polym; 2020 Jun; 238():116192. PubMed ID: 32299570 [TBL] [Abstract][Full Text] [Related]
19. Oxidized Hyaluronic Acid-Gelatin-Based Hydrogels for Tissue Engineering and Soft Tissue Mimicking. Kuth S; Karakaya E; Reiter N; Schmidt L; Paulsen F; Teßmar J; Budday S; Boccaccini AR Tissue Eng Part C Methods; 2022 Jul; 28(7):301-313. PubMed ID: 35216525 [TBL] [Abstract][Full Text] [Related]
20. Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs. Ziadlou R; Rotman S; Teuschl A; Salzer E; Barbero A; Martin I; Alini M; Eglin D; Grad S Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111701. PubMed ID: 33545860 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]