BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38104713)

  • 1. New insights into the substrate specificity of cholesterol oxidases for more aware application.
    Shapira M; Dobysh A; Liaudanskaya A; Aucharova H; Dzichenka Y; Bokuts V; Jovanović-Šanta S; Yantsevich A
    Biochimie; 2024 May; 220():1-10. PubMed ID: 38104713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics and biotechnological applications of microbial cholesterol oxidases.
    Doukyu N
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):825-37. PubMed ID: 19495743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refolding of a novel cholesterol oxidase from Pimelobacter simplex reveals dehydrogenation activity.
    Qin HM; Wang JW; Guo Q; Li S; Xu P; Zhu Z; Sun D; Lu F
    Protein Expr Purif; 2017 Nov; 139():1-7. PubMed ID: 28712956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholesterol oxidase from Rhodococcus erythropolis with high specificity toward β-cholestanol and pytosterols.
    Doukyu N; Ishikawa M
    PLoS One; 2020; 15(10):e0241126. PubMed ID: 33104755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and kinetic analyses of the H121A mutant of cholesterol oxidase.
    Lim L; Molla G; Guinn N; Ghisla S; Pollegioni L; Vrielink A
    Biochem J; 2006 Nov; 400(1):13-22. PubMed ID: 16856877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The presence of a hydrogen bond between asparagine 485 and the pi system of FAD modulates the redox potential in the reaction catalyzed by cholesterol oxidase.
    Yin Y; Sampson NS; Vrielink A; Lario PI
    Biochemistry; 2001 Nov; 40(46):13779-87. PubMed ID: 11705367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural analyses of the Group A flavin-dependent monooxygenase PieE reveal a sliding FAD cofactor conformation bridging OUT and IN conformations.
    Manenda MS; Picard MÈ; Zhang L; Cyr N; Zhu X; Barma J; Pascal JM; Couture M; Zhang C; Shi R
    J Biol Chem; 2020 Apr; 295(14):4709-4722. PubMed ID: 32111738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distortion of flavin geometry is linked to ligand binding in cholesterol oxidase.
    Lyubimov AY; Heard K; Tang H; Sampson NS; Vrielink A
    Protein Sci; 2007 Dec; 16(12):2647-56. PubMed ID: 18029419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate Channel Flexibility in Pseudomonas aeruginosa MurB Accommodates Two Distinct Substrates.
    Chen MW; Lohkamp B; Schnell R; Lescar J; Schneider G
    PLoS One; 2013; 8(6):e66936. PubMed ID: 23805286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure and site-directed mutagenesis of 3-ketosteroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1 explain its catalytic mechanism.
    Rohman A; van Oosterwijk N; Thunnissen AM; Dijkstra BW
    J Biol Chem; 2013 Dec; 288(49):35559-68. PubMed ID: 24165124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholesterol oxidase: biochemistry and structural features.
    Vrielink A; Ghisla S
    FEBS J; 2009 Dec; 276(23):6826-43. PubMed ID: 19843169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational site-directed mutagenesis studies of the role of the hydrophobic triad on substrate binding in cholesterol oxidase.
    Harb LH; Arooj M; Vrielink A; Mancera RL
    Proteins; 2017 Sep; 85(9):1645-1655. PubMed ID: 28508424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure of a bacterial L-amino acid oxidase from Rhodococcus opacus gives new evidence for the hydride mechanism for dehydrogenation.
    Faust A; Niefind K; Hummel W; Schomburg D
    J Mol Biol; 2007 Mar; 367(1):234-48. PubMed ID: 17234209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of cholesterol oxidase complexed with a steroid substrate: implications for flavin adenine dinucleotide dependent alcohol oxidases.
    Li J; Vrielink A; Brick P; Blow DM
    Biochemistry; 1993 Nov; 32(43):11507-15. PubMed ID: 8218217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissection of a flavoenzyme active site: the reaction catalyzed by cholesterol oxidase.
    Sampson NS
    Antioxid Redox Signal; 2001 Oct; 3(5):839-46. PubMed ID: 11761331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholesterol oxidase: biotechnological applications.
    Pollegioni L; Piubelli L; Molla G
    FEBS J; 2009 Dec; 276(23):6857-70. PubMed ID: 19843167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based redesign of cofactor binding in putrescine oxidase.
    Kopacz MM; Rovida S; van Duijn E; Fraaije MW; Mattevi A
    Biochemistry; 2011 May; 50(19):4209-17. PubMed ID: 21486042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterization of Chromobacterium sp. DS-1 cholesterol oxidase with thermal, organic solvent, and detergent tolerance.
    Doukyu N; Shibata K; Ogino H; Sagermann M
    Appl Microbiol Biotechnol; 2008 Aug; 80(1):59-70. PubMed ID: 18512056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholesterol oxidase: structure and function.
    Vrielink A
    Subcell Biochem; 2010; 51():137-58. PubMed ID: 20213543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning, sequence analysis, and expression of a gene encoding Chromobacterium sp. DS-1 cholesterol oxidase.
    Doukyu N; Shibata K; Ogino H; Sagermann M
    Appl Microbiol Biotechnol; 2009 Mar; 82(3):479-90. PubMed ID: 19015844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.