These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38104731)

  • 41. Concurrent catalytic removal of typical volatile organic compound mixtures over Au-Pd/α-MnO
    Xia Y; Xia L; Liu Y; Yang T; Deng J; Dai H
    J Environ Sci (China); 2018 Feb; 64():276-288. PubMed ID: 29478649
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sepiolite-Supported Manganese Oxide as an Efficient Catalyst for Formaldehyde Oxidation: Performance and Mechanism.
    Li D; Liu H; He X; Yao Y; Liu H; Chen J; Deng B; Lan X
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38930891
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quenching-Induced Defect-Rich Platinum/Metal Oxide Catalysts Promote Catalytic Oxidation.
    Chong Y; Chen T; Li Y; Lin J; Huang WH; Chen CL; Jin X; Fu M; Zhao Y; Chen G; Wei J; Qiu Y; Waterhouse GIN; Ye D; Lin Z; Guo L
    Environ Sci Technol; 2023 Apr; 57(14):5831-5840. PubMed ID: 36995339
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improved oxygen activation over metal-organic-frameworks derived and zinc-modulated Co@NC catalyst for boosting indoor gaseous formaldehyde oxidation at room temperature.
    Huang M; Chen J; Tang H; Jiao Y; Zhang J; Wang G; Wang R
    J Colloid Interface Sci; 2021 Nov; 601():833-842. PubMed ID: 34116471
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pt/MnO
    Chen D; Zhang G; Wang M; Li N; Xu Q; Li H; He J; Lu J
    Angew Chem Int Ed Engl; 2021 Mar; 60(12):6377-6381. PubMed ID: 33345451
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Egg-shaped core/shell α-Mn2O3@α-MnO2 as heterogeneous catalysts for decomposition of phenolics in aqueous solutions.
    Saputra E; Zhang H; Liu Q; Sun H; Wang S
    Chemosphere; 2016 Sep; 159():351-358. PubMed ID: 27318450
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of MnO
    Hayashi E; Yamaguchi Y; Kamata K; Tsunoda N; Kumagai Y; Oba F; Hara M
    J Am Chem Soc; 2019 Jan; 141(2):890-900. PubMed ID: 30612429
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The roles of various plasma species in the plasma and plasma-catalytic removal of low-concentration formaldehyde in air.
    Fan X; Zhu T; Sun Y; Yan X
    J Hazard Mater; 2011 Nov; 196():380-5. PubMed ID: 21968115
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design of γ-AlOOH, γ-MnOOH, and α-Mn
    Selim MS; Hamouda H; Hao Z; Shabana S; Chen X
    Dalton Trans; 2020 Jun; 49(25):8601-8613. PubMed ID: 32543624
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Investigation of suitable precursors for manganese oxide catalysts in ethyl acetate oxidation.
    Zhang Y; Wang M; Kang S; Pan T; Deng H; Shan W; He H
    J Environ Sci (China); 2021 Jun; 104():17-26. PubMed ID: 33985720
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Redox-Induced
    Huang Q; Zhao P; Lv L; Zhang W; Pan B
    Environ Sci Technol; 2023 Jun; 57(24):9096-9104. PubMed ID: 37289934
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficient α-MnO
    Huang J; Fang R; Sun Y; Li J; Dong F
    Chemosphere; 2021 Jan; 263():128103. PubMed ID: 33297098
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Preparation and high catalytic performance of Au/3DOM Mn2O3 for the oxidation of carbon monoxide and toluene.
    Xie S; Dai H; Deng J; Yang H; Han W; Arandiyan H; Guo G
    J Hazard Mater; 2014 Aug; 279():392-401. PubMed ID: 25093549
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Machine-Learning-Assisted Descriptors Identification for Indoor Formaldehyde Oxidation Catalysts.
    Cao X; Huang J; Du K; Tian Y; Hu Z; Luo Z; Wang J; Guo Y
    Environ Sci Technol; 2024 May; 58(19):8372-8379. PubMed ID: 38691628
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Formaldehyde Ambient-Temperature Decomposition over Pd/Mn
    Liu XH; Lu T; Jiao X; Jiang Z; Chen C; Wang Y; Jian Y; He C
    Environ Sci Technol; 2024 Jan; 58(3):1752-1762. PubMed ID: 38190653
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ultralow Loading of Silver Nanoparticles on Mn2O3 Nanowires Derived with Molten Salts: A High-Efficiency Catalyst for the Oxidative Removal of Toluene.
    Deng J; He S; Xie S; Yang H; Liu Y; Guo G; Dai H
    Environ Sci Technol; 2015 Sep; 49(18):11089-95. PubMed ID: 26287508
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Density functional theory-based screening of Ti
    Zheng Z; Zhang C; Li J; Fang D; Tan P; Fang Q; Chen G
    Chemosphere; 2024 May; 356():142024. PubMed ID: 38614396
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Significant role of Mn(III) sites in e(g)(1) configuration in manganese oxide catalysts for efficient artificial water oxidation.
    Indra A; Menezes PW; Schuster F; Driess M
    J Photochem Photobiol B; 2015 Nov; 152(Pt A):156-61. PubMed ID: 25542875
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Heterogeneously-Catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid with MnO
    Hayashi E; Komanoya T; Kamata K; Hara M
    ChemSusChem; 2017 Feb; 10(4):654-658. PubMed ID: 27925403
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Removal of NO(x) at low temperature over mesoporous alpha-Mn2O3 catalyst.
    Jeon MJ; Park SH; Kim JM; Jeon JK; Kim SC; Kim DH; Park YK
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2527-31. PubMed ID: 24745258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.