BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38104839)

  • 1. Progressive low-temperature volatilization control: Efficient separation of arsenic and antimony from smelter dust.
    Che J; Zhang W; Chen Y; Feng S; Zuo Y; Wang C
    Sci Total Environ; 2024 Feb; 912():169366. PubMed ID: 38104839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient removal and recovery of arsenic from copper smelting flue dust by a roasting method: Process optimization, phase transformation and mechanism investigation.
    Zhang W; Che J; Xia L; Wen P; Chen J; Ma B; Wang C
    J Hazard Mater; 2021 Jun; 412():125232. PubMed ID: 33951866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive recovery of arsenic and antimony from arsenic-rich copper smelter dust.
    Xue J; Long D; Zhong H; Wang S; Liu L
    J Hazard Mater; 2021 Jul; 413():125365. PubMed ID: 33930948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-treatment of copper smelting flue dust and arsenic sulfide residue by a pyrometallurgical approach for simultaneous removal and recovery of arsenic.
    Zhang W; Che J; Wen P; Xia L; Ma B; Chen J; Wang C
    J Hazard Mater; 2021 Aug; 416():126149. PubMed ID: 34492933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic release pathway and the interaction principle among major species in vacuum sulfide reduction roasting of copper smelting flue dust.
    Shi T; Xu B; He J; Liu X; Zuo Z
    Environ Pollut; 2023 Aug; 330():121809. PubMed ID: 37172770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method for dearsenization from arsenic-bearing waste slag by selective chlorination and low-temperature volatilization.
    Xing Z; Yang H; Xue X; Jiang P
    Environ Sci Pollut Res Int; 2022 Aug; 29(40):60145-60152. PubMed ID: 35419688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behaviour of antimony during thermal treatment of Sb-rich halogenated waste.
    Klein J; Dorge S; Trouvé G; Venditti D; Durécu S
    J Hazard Mater; 2009 Jul; 166(2-3):585-93. PubMed ID: 19167161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A shortcut approach for cooperative disposal of flue dust and waste acid from copper smelting: Decontamination of arsenic-bearing waste and recovery of metals.
    Che J; Zhang W; Ma B; Chen Y; Wang L; Wang C
    Sci Total Environ; 2022 Oct; 843():157063. PubMed ID: 35780900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep resource utilization of hazardous arsenic-alkali slag: Thermodynamic analysis, mechanism investigation and process optimization.
    Tian J; Sun W; Han H; Wang Y; Peng J; Zhang X
    J Environ Manage; 2024 Mar; 355():120440. PubMed ID: 38437740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Destruction of As-Sb Solid Solution through a Selective Oxidation Process in the Presence of CaO and Its Effect on As Removal from the As-Sb Dust.
    Xu M; Li L; Mao KX
    ACS Omega; 2019 Apr; 4(4):6968-6976. PubMed ID: 31459809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of straw-returning on antimony and arsenic volatilization from paddy soil and accumulation in rice grains.
    Yan H; Wang X; Yang Y; Duan G; Zhang H; Cheng W
    Environ Pollut; 2020 Aug; 263(Pt A):114581. PubMed ID: 33618473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimony smelting process generating solid wastes and dust: characterization and leaching behaviors.
    Guo X; Wang K; He M; Liu Z; Yang H; Li S
    J Environ Sci (China); 2014 Jul; 26(7):1549-56. PubMed ID: 25080005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Landfill gas as a source of anthropogenic antimony and arsenic release.
    de Oliveira FDG; Robey NM; Smallwood TJ; Spreadbury CJ; Townsend TG
    Chemosphere; 2022 Nov; 307(Pt 2):135739. PubMed ID: 35850227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and pH-dependent environmental stability of arsenic trioxide-containing copper smelter flue dust.
    Jarošíková A; Ettler V; Mihaljevič M; Drahota P; Culka A; Racek M
    J Environ Manage; 2018 Mar; 209():71-80. PubMed ID: 29276995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimony release and volatilization from rice paddy soils: Field and microcosm study.
    Caplette JN; Gfeller L; Lei D; Liao J; Xia J; Zhang H; Feng X; Mestrot A
    Sci Total Environ; 2022 Oct; 842():156631. PubMed ID: 35691353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial Distribution and Environmental Risk of Arsenic and Antimony in Soil Around an Antimony Smelter of Qinglong County.
    He Y; Han Z; Wu F; Xiong J; Gu S; Wu P
    Bull Environ Contam Toxicol; 2021 Dec; 107(6):1043-1052. PubMed ID: 33787976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization and transformation of co-existing arsenic and antimony in highly contaminated sediment by nano zero-valent iron.
    Guo J; Yin Z; Zhong W; Jing C
    J Environ Sci (China); 2022 Feb; 112():152-160. PubMed ID: 34955198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovering metals from flue dust produced in secondary copper smelting through a novel process combining low temperature roasting, water leaching and mechanochemical reduction.
    Chen J; Zhang W; Ma B; Che J; Xia L; Wen P; Wang C
    J Hazard Mater; 2022 May; 430():128497. PubMed ID: 35739678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactive effects of arsenic and antimony on Ipomoea aquatica growth and bioaccumulation in co-contaminated soil.
    Egodawatta LP; Holland A; Koppel D; Jolley DF
    Environ Pollut; 2020 Apr; 259():113830. PubMed ID: 31891910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient separation and recovery of lithium through volatilization in the recycling process of spent lithium-ion batteries.
    Qu G; Wei Y; Liu C; Yao S; Zhou S; Li B
    Waste Manag; 2022 Aug; 150():66-74. PubMed ID: 35803158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.