BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 38105203)

  • 1. Methods for Assessment of Nucleotide Excision Repair Efficiency.
    Popov AA; Petruseva IO; Naumenko NV; Lavrik OI
    Biochemistry (Mosc); 2023 Nov; 88(11):1844-1856. PubMed ID: 38105203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global genome and transcription-coupled nucleotide excision repair pathway in prokaryotes.
    Thakur M; Muniyappa K
    J Biosci; 2023; 48():. PubMed ID: 38088378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trabectedin derails transcription-coupled nucleotide excision repair to induce DNA breaks in highly transcribed genes.
    Son K; Takhaveev V; Mor V; Yu H; Dillier E; Zilio N; Püllen NJL; Ivanov D; Ulrich HD; Sturla SJ; Schärer OD
    Nat Commun; 2024 Feb; 15(1):1388. PubMed ID: 38360910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Interactome of Base and Nucleotide Excision DNA Repair Systems].
    Rechkunova NI; Krasikova YS; Lavrik OI
    Mol Biol (Mosk); 2021; 55(2):181-193. PubMed ID: 33871434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging roles for histone modifications in DNA excision repair.
    Mao P; Wyrick JJ
    FEMS Yeast Res; 2016 Nov; 16(7):. PubMed ID: 27737893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleotide Excision Repair and Transcription-coupled DNA Repair Abrogate the Impact of DNA Damage on Transcription.
    Nadkarni A; Burns JA; Gandolfi A; Chowdhury MA; Cartularo L; Berens C; Geacintov NE; Scicchitano DA
    J Biol Chem; 2016 Jan; 291(2):848-61. PubMed ID: 26559971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat stress modulates nucleotide excision repair capacity in zebrafish (Danio rerio) early and mid-early embryos via distinct mechanisms.
    Chien LC; Wu YH; Ho TN; Huang YY; Hsu T
    Chemosphere; 2020 Jan; 238():124653. PubMed ID: 31473528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleotide excision repair: a versatile and smart toolkit.
    Zhang X; Yin M; Hu J
    Acta Biochim Biophys Sin (Shanghai); 2022 May; 54(6):807-819. PubMed ID: 35975604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide excision repair in higher eukaryotes: mechanism of primary damage recognition in global genome repair.
    Rechkunova NI; Lavrik OI
    Subcell Biochem; 2010; 50():251-77. PubMed ID: 20012586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repair-Resistant DNA Lesions.
    Geacintov NE; Broyde S
    Chem Res Toxicol; 2017 Aug; 30(8):1517-1548. PubMed ID: 28750166
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleotide excision repair in eukaryotes.
    Schärer OD
    Cold Spring Harb Perspect Biol; 2013 Oct; 5(10):a012609. PubMed ID: 24086042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition of DNA adducts by human nucleotide excision repair. Evidence for a thermodynamic probing mechanism.
    Gunz D; Hess MT; Naegeli H
    J Biol Chem; 1996 Oct; 271(41):25089-98. PubMed ID: 8810263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis for damage recognition and verification by XPC-RAD23B and TFIIH in nucleotide excision repair.
    Mu H; Geacintov NE; Broyde S; Yeo JE; Schärer OD
    DNA Repair (Amst); 2018 Nov; 71():33-42. PubMed ID: 30174301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide excision repair: DNA damage recognition and preincision complex assembly.
    Rechkunova NI; Krasikova YS; Lavrik OI
    Biochemistry (Mosc); 2011 Jan; 76(1):24-35. PubMed ID: 21568837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A scanning-to-incision switch in TFIIH-XPG induced by DNA damage licenses nucleotide excision repair.
    Bralić A; Tehseen M; Sobhy MA; Tsai CL; Alhudhali L; Yi G; Yu J; Yan C; Ivanov I; Tsutakawa SE; Tainer JA; Hamdan SM
    Nucleic Acids Res; 2023 Feb; 51(3):1019-1033. PubMed ID: 36477609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging Roles of Post-Translational Modifications in Nucleotide Excision Repair.
    Borsos BN; Majoros H; Pankotai T
    Cells; 2020 Jun; 9(6):. PubMed ID: 32549338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eukaryotic nucleotide excision repair: from understanding mechanisms to influencing biology.
    Shuck SC; Short EA; Turchi JJ
    Cell Res; 2008 Jan; 18(1):64-72. PubMed ID: 18166981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bulky Adducts in Clustered DNA Lesions: Causes of Resistance to the NER System.
    Naumenko NV; Petruseva IO; Lavrik OI
    Acta Naturae; 2022; 14(4):38-49. PubMed ID: 36694906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcription-Coupled Nucleotide Excision Repair and the Transcriptional Response to UV-Induced DNA Damage.
    Nieto Moreno N; Olthof AM; Svejstrup JQ
    Annu Rev Biochem; 2023 Jun; 92():81-113. PubMed ID: 37040775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociation Dynamics of XPC-RAD23B from Damaged DNA Is a Determining Factor of NER Efficiency.
    Hilton B; Gopal S; Xu L; Mazumder S; Musich PR; Cho BP; Zou Y
    PLoS One; 2016; 11(6):e0157784. PubMed ID: 27327897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.