These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 38105603)
1. Regeneration of Spent Lithium Manganate Batteries into Al-Doped MnO Zhang L; Liao Y; Ye M; Cai W; Xiao M; Hu C; Zhong B; Wan F; Guo X ACS Appl Mater Interfaces; 2023 Dec; 15(51):59475-59481. PubMed ID: 38105603 [TBL] [Abstract][Full Text] [Related]
2. Recycling of Spent Graphite from Lithium-Ion Batteries for Aqueous Zn Dual-Ion Batteries. Cai W; Zhang L; Chen K; Xiao M; Chen T; Dong X; Pu Z; Wan F; Guo X ACS Appl Mater Interfaces; 2024 Sep; 16(38):50897-50904. PubMed ID: 39267588 [TBL] [Abstract][Full Text] [Related]
3. Recycling and Reuse of Spent LIBs: Technological Advances and Future Directions. Lv L; Zhou S; Liu C; Sun Y; Zhang J; Bu C; Meng J; Huang Y Molecules; 2024 Jul; 29(13):. PubMed ID: 38999113 [TBL] [Abstract][Full Text] [Related]
4. Separation of cathode particles and aluminum current foil in lithium-ion battery by high-voltage pulsed discharge Part II: Prospective life cycle assessment based on experimental data. Kikuchi Y; Suwa I; Heiho A; Dou Y; Lim S; Namihira T; Mochidzuki K; Koita T; Tokoro C Waste Manag; 2021 Aug; 132():86-95. PubMed ID: 34325331 [TBL] [Abstract][Full Text] [Related]
5. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries. Zeng X; Li J J Hazard Mater; 2014 Apr; 271():50-6. PubMed ID: 24607415 [TBL] [Abstract][Full Text] [Related]
6. Challenges in Recycling Spent Lithium-Ion Batteries: Spotlight on Polyvinylidene Fluoride Removal. Wang M; Liu K; Yu J; Zhang Q; Zhang Y; Valix M; Tsang DCW Glob Chall; 2023 Mar; 7(3):2200237. PubMed ID: 36910467 [TBL] [Abstract][Full Text] [Related]
7. The Recycling of Spent Lithium-Ion Batteries: Crucial Flotation for the Separation of Cathode and Anode Materials. Ma X; Ge P; Wang L; Sun W; Bu Y; Sun M; Yang Y Molecules; 2023 May; 28(10):. PubMed ID: 37241821 [TBL] [Abstract][Full Text] [Related]
8. A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi Fan X; Tan C; Li Y; Chen Z; Li Y; Huang Y; Pan Q; Zheng F; Wang H; Li Q J Hazard Mater; 2021 May; 410():124610. PubMed ID: 33243647 [TBL] [Abstract][Full Text] [Related]
9. Efficient separation of aluminum foil from mixed-type spent lithium-ion power batteries. Hu Z; Zhu N; Wei X; Zhang S; Li F; Wu P; Chen Y J Environ Manage; 2021 Nov; 298():113500. PubMed ID: 34388548 [TBL] [Abstract][Full Text] [Related]
10. Facile and efficient recycling of cathode materials of spent lithium manganate batteries. Zhou Z; Liu Y; Tang Z; Xia J; Jin H; Zhang J; Chen Y; Wang C Chem Commun (Camb); 2023 Mar; 59(26):3906-3909. PubMed ID: 36919619 [TBL] [Abstract][Full Text] [Related]
11. The Current Process for the Recycling of Spent Lithium Ion Batteries. Zhou LF; Yang D; Du T; Gong H; Luo WB Front Chem; 2020; 8():578044. PubMed ID: 33344413 [TBL] [Abstract][Full Text] [Related]
12. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning. He LP; Sun SY; Song XF; Yu JG Waste Manag; 2015 Dec; 46():523-8. PubMed ID: 26323202 [TBL] [Abstract][Full Text] [Related]
13. A sustainable approach for selective recovery of lithium from cathode materials of spent lithium-ion batteries by induced phase transition. Rao F; Sun Z; Lv W; Zhang X; Guan J; Zheng X Waste Manag; 2023 Feb; 156():247-254. PubMed ID: 36502638 [TBL] [Abstract][Full Text] [Related]
14. Closed-loop recycling of spent lithium-ion batteries based on selective sulfidation: An unconventional approach. Gu K; Gao X; Chen Y; Qin W; Han J Waste Manag; 2023 Sep; 169():32-42. PubMed ID: 37393754 [TBL] [Abstract][Full Text] [Related]
15. Recycling of LiFePO Chen X; Li S; Wang Y; Jiang Y; Tan X; Han W; Wang S Waste Manag; 2021 Dec; 136():67-75. PubMed ID: 34637980 [TBL] [Abstract][Full Text] [Related]
16. Leaching kinetics of fluorine during the aluminum removal from spent Li-ion battery cathode materials. Li S; Zhu J J Environ Sci (China); 2024 Apr; 138():312-325. PubMed ID: 38135398 [TBL] [Abstract][Full Text] [Related]
17. Ultra-fast recovery of cathode materials from spent LiFePO Zhu X; Chen C; Guo Q; Liu M; Zhang Y; Sun Z; Song H Waste Manag; 2023 Jul; 166():70-77. PubMed ID: 37156188 [TBL] [Abstract][Full Text] [Related]
18. Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries. Bi H; Zhu H; Zu L; Gao Y; Gao S; Bai Y Waste Manag Res; 2020 Aug; 38(8):911-920. PubMed ID: 32552572 [TBL] [Abstract][Full Text] [Related]
19. Regeneration and characterization of LiNi Wang Y; Ma L; Xi X; Nie Z; Zhang Y; Wen X; Lyu Z Waste Manag; 2019 Jul; 95():192-200. PubMed ID: 31351604 [TBL] [Abstract][Full Text] [Related]
20. Enabling Future Closed-Loop Recycling of Spent Lithium-Ion Batteries: Direct Cathode Regeneration. Yang T; Luo D; Yu A; Chen Z Adv Mater; 2023 Sep; 35(36):e2203218. PubMed ID: 37015003 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]