These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38105894)

  • 1. Deep learning models for preoperative T-stage assessment in rectal cancer using MRI: exploring the impact of rectal filling.
    Tian C; Ma X; Lu H; Wang Q; Shao C; Yuan Y; Shen F
    Front Med (Lausanne); 2023; 10():1326324. PubMed ID: 38105894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning-based clinical-radiomics nomogram for preoperative prediction of lymph node metastasis in patients with rectal cancer: a two-center study.
    Ma S; Lu H; Jing G; Li Z; Zhang Q; Ma X; Chen F; Shao C; Lu Y; Wang H; Shen F
    Front Med (Lausanne); 2023; 10():1276672. PubMed ID: 38105891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning-Based Multiparametric MRI Model for Preoperative T-Stage in Rectal Cancer.
    Wei Y; Wang H; Chen Z; Zhu Y; Li Y; Lu B; Pan K; Wen C; Cao G; He Y; Zhou J; Pan Z; Wang M
    J Magn Reson Imaging; 2024 Mar; 59(3):1083-1092. PubMed ID: 37367938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved deep learning for automatic localisation and segmentation of rectal cancer on T2-weighted MRI.
    Zhang Z; Han J; Ji W; Lou H; Li Z; Hu Y; Wang M; Qi B; Liu S
    J Med Radiat Sci; 2024 Dec; 71(4):509-518. PubMed ID: 38654675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Application of Automated Machine Learning Based on Radiomics Features of T2WI and RS-EPI DWI to Predict Preoperative T Staging of Rectal Cancer].
    Wen DG; Hu SX; Li ZL; Deng XB; Tian C; Li X; Wang XR; Leng Q; Xia CC
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Jul; 52(4):698-705. PubMed ID: 34323052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning for automatic segmentation of vestibular schwannoma: a retrospective study from multi-center routine MRI.
    Kujawa A; Dorent R; Connor S; Thomson S; Ivory M; Vahedi A; Guilhem E; Wijethilake N; Bradford R; Kitchen N; Bisdas S; Ourselin S; Vercauteren T; Shapey J
    Front Comput Neurosci; 2024; 18():1365727. PubMed ID: 38784680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully semantic segmentation for rectal cancer based on post-nCRT MRl modality and deep learning framework.
    Xia S; Li Q; Zhu HT; Zhang XY; Shi YJ; Yang D; Wu J; Guan Z; Lu Q; Li XT; Sun YS
    BMC Cancer; 2024 Mar; 24(1):315. PubMed ID: 38454349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep-learning-based 3D super-resolution MRI radiomics model: superior predictive performance in preoperative T-staging of rectal cancer.
    Hou M; Zhou L; Sun J
    Eur Radiol; 2023 Jan; 33(1):1-10. PubMed ID: 35726100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Deep Learning Model Based on MRI and Clinical Factors Facilitates Noninvasive Evaluation of KRAS Mutation in Rectal Cancer.
    Liu H; Yin H; Li J; Dong X; Zheng H; Zhang T; Yin Q; Zhang Z; Lu M; Zhang H; Wang D
    J Magn Reson Imaging; 2022 Dec; 56(6):1659-1668. PubMed ID: 35587946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A deep learning-based automatic staging method for early endometrial cancer on MRI images.
    Mao W; Chen C; Gao H; Xiong L; Lin Y
    Front Physiol; 2022; 13():974245. PubMed ID: 36111158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing different CT, PET and MRI multi-modality image combinations for deep learning-based head and neck tumor segmentation.
    Ren J; Eriksen JG; Nijkamp J; Korreman SS
    Acta Oncol; 2021 Nov; 60(11):1399-1406. PubMed ID: 34264157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting tumor deposits in rectal cancer: a combined deep learning model using T2-MR imaging and clinical features.
    Jin Y; Yin H; Zhang H; Wang Y; Liu S; Yang L; Song B
    Insights Imaging; 2023 Dec; 14(1):221. PubMed ID: 38117396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating a deep neural network and Transformer architecture for the automatic segmentation and survival prediction in cervical cancer.
    Zhu S; Lin L; Liu Q; Liu J; Song Y; Xu Q
    Quant Imaging Med Surg; 2024 Aug; 14(8):5408-5419. PubMed ID: 39144008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technical Note: A deep learning-based autosegmentation of rectal tumors in MR images.
    Wang J; Lu J; Qin G; Shen L; Sun Y; Ying H; Zhang Z; Hu W
    Med Phys; 2018 Jun; 45(6):2560-2564. PubMed ID: 29663417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lung tumor segmentation in 4D CT images using motion convolutional neural networks.
    Momin S; Lei Y; Tian Z; Wang T; Roper J; Kesarwala AH; Higgins K; Bradley JD; Liu T; Yang X
    Med Phys; 2021 Nov; 48(11):7141-7153. PubMed ID: 34469001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic Osteoporosis Screening System Using Radiomics and Deep Learning from Low-Dose Chest CT Images.
    Tong X; Wang S; Zhang J; Fan Y; Liu Y; Wei W
    Bioengineering (Basel); 2024 Jan; 11(1):. PubMed ID: 38247927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated deep learning method for whole-breast segmentation in diffusion-weighted breast MRI.
    Zhang L; Mohamed AA; Chai R; Guo Y; Zheng B; Wu S
    J Magn Reson Imaging; 2020 Feb; 51(2):635-643. PubMed ID: 31301201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anatomical Partition-Based Deep Learning: An Automatic Nasopharyngeal MRI Recognition Scheme.
    Li S; Hua HL; Li F; Kong YG; Zhu ZL; Li SL; Chen XX; Deng YQ; Tao ZZ
    J Magn Reson Imaging; 2022 Oct; 56(4):1220-1229. PubMed ID: 35157782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic segmentation of rectal tumor on diffusion-weighted images by deep learning with U-Net.
    Zhu HT; Zhang XY; Shi YJ; Li XT; Sun YS
    J Appl Clin Med Phys; 2021 Sep; 22(9):324-331. PubMed ID: 34343402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.