BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 38106214)

  • 1. Reconstructing Spatial Transcriptomics at the Single-cell Resolution with BayesDeep.
    Jiang X; Dong L; Wang S; Wen Z; Chen M; Xu L; Xiao G; Li Q
    bioRxiv; 2023 Dec; ():. PubMed ID: 38106214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical and machine learning methods for spatially resolved transcriptomics with histology.
    Hu J; Schroeder A; Coleman K; Chen C; Auerbach BJ; Li M
    Comput Struct Biotechnol J; 2021; 19():3829-3841. PubMed ID: 34285782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PASTE2: Partial Alignment of Multi-slice Spatially Resolved Transcriptomics Data.
    Liu X; Zeira R; Raphael BJ
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partial alignment of multislice spatially resolved transcriptomics data.
    Liu X; Zeira R; Raphael BJ
    Genome Res; 2023 Jul; 33(7):1124-1132. PubMed ID: 37553263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probabilistic cell/domain-type assignment of spatial transcriptomics data with SpatialAnno.
    Shi X; Yang Y; Ma X; Zhou Y; Guo Z; Wang C; Liu J
    Nucleic Acids Res; 2023 Dec; 51(22):e115. PubMed ID: 37941153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SpaDecon: cell-type deconvolution in spatial transcriptomics with semi-supervised learning.
    Coleman K; Hu J; Schroeder A; Lee EB; Li M
    Commun Biol; 2023 Apr; 6(1):378. PubMed ID: 37029267
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Tippani M; Divecha HR; Catallini JL; Kwon SH; Weber LM; Spangler A; Jaffe AE; Hyde TM; Kleinman JE; Hicks SC; Martinowich K; Collado-Torres L; Page SC; Maynard KR
    Biol Imaging; 2023; 3():e23. PubMed ID: 38510173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatially resolved transcriptomics and the kidney: many opportunities.
    Dixon EE; Wu H; Sulvarán-Guel E; Guo J; Humphreys BD
    Kidney Int; 2022 Sep; 102(3):482-491. PubMed ID: 35788360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A count-based model for delineating cell-cell interactions in spatial transcriptomics data.
    Sarkar H; Chitra U; Gold J; Raphael BJ
    Bioinformatics; 2024 Jun; 40(Supplement_1):i481-i489. PubMed ID: 38940134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SpotSweeper: spatially-aware quality control for spatial transcriptomics.
    Totty M; Hicks SC; Guo B
    bioRxiv; 2024 Jun; ():. PubMed ID: 38895212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SRTsim: spatial pattern preserving simulations for spatially resolved transcriptomics.
    Zhu J; Shang L; Zhou X
    Genome Biol; 2023 Mar; 24(1):39. PubMed ID: 36869394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EnDecon: cell type deconvolution of spatially resolved transcriptomics data via ensemble learning.
    Tu JJ; Li HS; Yan H; Zhang XF
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36610709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Transcriptomics Arena (STAr): an Integrated Platform for Spatial Transcriptomics Methodology Research.
    Jiang X; Luo D; Fern Ndez E; Yang J; Li H; Jin KW; Zhan Y; Yao B; Bedi S; Xiao G; Zhan X; Li Q; Xie Y
    bioRxiv; 2023 Mar; ():. PubMed ID: 36945650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges and considerations for single-cell and spatially resolved transcriptomics sample collection during spaceflight.
    Overbey EG; Das S; Cope H; Madrigal P; Andrusivova Z; Frapard S; Klotz R; Bezdan D; Gupta A; Scott RT; Park J; Chirko D; Galazka JM; Costes SV; Mason CE; Herranz R; Szewczyk NJ; Borg J; Giacomello S
    Cell Rep Methods; 2022 Nov; 2(11):100325. PubMed ID: 36452864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-cell level deconvolution, convolution, and clustering in spatial transcriptomics by aligning spot level transcriptome to nuclear morphology.
    Zhu S; Kubota N; Wang S; Wang T; Xiao G; Hoshida Y
    bioRxiv; 2023 Dec; ():. PubMed ID: 38187541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian Hidden Mark Interaction Model for Detecting Spatially Variable Genes in Imaging-Based Spatially Resolved Transcriptomics Data.
    Yang J; Jiang X; Jin KW; Shin S; Li Q
    bioRxiv; 2023 Dec; ():. PubMed ID: 38168368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning in spatially resolved transcriptfomics: a comprehensive technical view.
    Zahedi R; Ghamsari R; Argha A; Macphillamy C; Beheshti A; Alizadehsani R; Lovell NH; Lotfollahi M; Alinejad-Rokny H
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38483255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational elucidation of spatial gene expression variation from spatially resolved transcriptomics data.
    Li K; Yan C; Li C; Chen L; Zhao J; Zhang Z; Bao S; Sun J; Zhou M
    Mol Ther Nucleic Acids; 2022 Mar; 27():404-411. PubMed ID: 35036053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SSAM-lite: A Light-Weight Web App for Rapid Analysis of Spatially Resolved Transcriptomics Data.
    Tiesmeyer S; Sahay S; Müller-Bötticher N; Eils R; Mackowiak SD; Ishaque N
    Front Genet; 2022; 13():785877. PubMed ID: 35295943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.