These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 38106392)

  • 1. Orientation representation in human visual cortices: contributions of non-visual information and action-related process.
    Threethipthikoon T; Li Z; Shigemasu H
    Front Psychol; 2023; 14():1231109. PubMed ID: 38106392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recruitment of Foveal Retinotopic Cortex During Haptic Exploration of Shapes and Actions in the Dark.
    Monaco S; Gallivan JP; Figley TD; Singhal A; Culham JC
    J Neurosci; 2017 Nov; 37(48):11572-11591. PubMed ID: 29066555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Position and Identity Information Available in fMRI Patterns of Activity in Human Visual Cortex.
    Roth ZN; Zohary E
    J Neurosci; 2015 Aug; 35(33):11559-71. PubMed ID: 26290233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hand-Selective Visual Regions Represent How to Grasp 3D Tools: Brain Decoding during Real Actions.
    Knights E; Mansfield C; Tonin D; Saada J; Smith FW; Rossit S
    J Neurosci; 2021 Jun; 41(24):5263-5273. PubMed ID: 33972399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-line control of grasping actions: object-specific motor facilitation requires sustained visual input.
    Prabhu G; Lemon R; Haggard P
    J Neurosci; 2007 Nov; 27(46):12651-4. PubMed ID: 18003844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a "natural" grasping task induces pantomime-like grasps.
    Whitwell RL; Ganel T; Byrne CM; Goodale MA
    Front Hum Neurosci; 2015; 9():216. PubMed ID: 25999834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Context-specific grasp movement representation in macaque ventral premotor cortex.
    Fluet MC; Baumann MA; Scherberger H
    J Neurosci; 2010 Nov; 30(45):15175-84. PubMed ID: 21068323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disentangling Representations of Object and Grasp Properties in the Human Brain.
    Fabbri S; Stubbs KM; Cusack R; Culham JC
    J Neurosci; 2016 Jul; 36(29):7648-62. PubMed ID: 27445143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unaware Processing of Tools in the Neural System for Object-Directed Action Representation.
    Tettamanti M; Conca F; Falini A; Perani D
    J Neurosci; 2017 Nov; 37(44):10712-10724. PubMed ID: 28978664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Action planning modulates the representation of object features in human fronto-parietal and occipital cortex.
    Velji-Ibrahim J; Crawford JD; Cattaneo L; Monaco S
    Eur J Neurosci; 2022 Sep; 56(6):4803-4818. PubMed ID: 35841138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Action preparation shapes processing in early visual cortex.
    Gutteling TP; Petridou N; Dumoulin SO; Harvey BM; Aarnoutse EJ; Kenemans JL; Neggers SF
    J Neurosci; 2015 Apr; 35(16):6472-80. PubMed ID: 25904798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous in-flight accommodation of hand orientation to unseen grasp targets: A case of action blindsight.
    Prentiss EK; Schneider CL; Williams ZR; Sahin B; Mahon BZ
    Cogn Neuropsychol; 2018 Oct; 35(7):343-351. PubMed ID: 29544406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of perception of the hand's aperture in a grasp.
    Butler AA; Héroux ME; van Eijk T; Gandevia SC
    J Physiol; 2019 Dec; 597(24):5973-5984. PubMed ID: 31671476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional magnetic resonance adaptation reveals the involvement of the dorsomedial stream in hand orientation for grasping.
    Monaco S; Cavina-Pratesi C; Sedda A; Fattori P; Galletti C; Culham JC
    J Neurophysiol; 2011 Nov; 106(5):2248-63. PubMed ID: 21795615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grasping with a Twist: Dissociating Action Goals from Motor Actions in Human Frontoparietal Circuits.
    Rens G; Figley TD; Gallivan JP; Liu Y; Culham JC
    J Neurosci; 2023 Aug; 43(32):5831-5847. PubMed ID: 37474309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the reaching-grasping network in humans through multivoxel pattern decoding.
    Di Bono MG; Begliomini C; Castiello U; Zorzi M
    Brain Behav; 2015 Nov; 5(11):e00412. PubMed ID: 26664793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding motor imagery and action planning in the early visual cortex: Overlapping but distinct neural mechanisms.
    Monaco S; Malfatti G; Culham JC; Cattaneo L; Turella L
    Neuroimage; 2020 Sep; 218():116981. PubMed ID: 32454207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Haptically Guided Grasping. fMRI Shows Right-Hemisphere Parietal Stimulus Encoding, and Bilateral Dorso-Ventral Parietal Gradients of Object- and Action-Related Processing during Grasp Execution.
    Marangon M; Kubiak A; Króliczak G
    Front Hum Neurosci; 2015; 9():691. PubMed ID: 26779002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potentiation of two components of the reach-to-grasp action during object categorisation in visual memory.
    Derbyshire N; Ellis R; Tucker M
    Acta Psychol (Amst); 2006 May; 122(1):74-98. PubMed ID: 16376844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct Neural Components of Visually Guided Grasping during Planning and Execution.
    Klein LK; Maiello G; Stubbs K; Proklova D; Chen J; Paulun VC; Culham JC; Fleming RW
    J Neurosci; 2023 Dec; 43(49):8504-8514. PubMed ID: 37848285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.