These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 38106539)
1. LoCoLotive: In silico mining for low-copy nuclear loci based on target capture probe sets and arbitrary reference genomes. Lautenschlager U; Scheunert A Appl Plant Sci; 2023; 11(6):e11535. PubMed ID: 38106539 [TBL] [Abstract][Full Text] [Related]
2. Nano-Strainer: A workflow for the identification of single-copy nuclear loci for plant systematic studies, using target capture kits and Oxford Nanopore long reads. Scheunert A; Lautenschlager U; Ott T; Oberprieler C Ecol Evol; 2023 Jul; 13(7):e10190. PubMed ID: 37475726 [TBL] [Abstract][Full Text] [Related]
3. Target Nuclear and Off-Target Plastid Hybrid Enrichment Data Inform a Range of Evolutionary Depths in the Orchid Genus Granados Mendoza C; Jost M; Hágsater E; Magallón S; van den Berg C; Lemmon EM; Lemmon AR; Salazar GA; Wanke S Front Plant Sci; 2019; 10():1761. PubMed ID: 32063915 [TBL] [Abstract][Full Text] [Related]
4. A Universal Probe Set for Targeted Sequencing of 353 Nuclear Genes from Any Flowering Plant Designed Using k-Medoids Clustering. Johnson MG; Pokorny L; Dodsworth S; Botigué LR; Cowan RS; Devault A; Eiserhardt WL; Epitawalage N; Forest F; Kim JT; Leebens-Mack JH; Leitch IJ; Maurin O; Soltis DE; Soltis PS; Wong GK; Baker WJ; Wickett NJ Syst Biol; 2019 Jul; 68(4):594-606. PubMed ID: 30535394 [TBL] [Abstract][Full Text] [Related]
5. A target enrichment probe set for resolving phylogenetic relationships in the coffee family, Rubiaceae. Ball LD; Bedoya AM; Taylor CM; Lagomarsino LP Appl Plant Sci; 2023; 11(6):e11554. PubMed ID: 38106541 [TBL] [Abstract][Full Text] [Related]
6. New targets acquired: Improving locus recovery from the Angiosperms353 probe set. McLay TGB; Birch JL; Gunn BF; Ning W; Tate JA; Nauheimer L; Joyce EM; Simpson L; Schmidt-Lebuhn AN; Baker WJ; Forest F; Jackson CJ Appl Plant Sci; 2021 Jul; 9(7):. PubMed ID: 34336399 [TBL] [Abstract][Full Text] [Related]
7. Comparison of taxon-specific versus general locus sets for targeted sequence capture in plant phylogenomics. Chau JH; Rahfeldt WA; Olmstead RG Appl Plant Sci; 2018 Mar; 6(3):e1032. PubMed ID: 29732262 [TBL] [Abstract][Full Text] [Related]
8. Streamlining universal single-copy orthologue and ultraconserved element design: A case study in Collembola. Sun X; Ding Y; Orr MC; Zhang F Mol Ecol Resour; 2020 May; 20(3):. PubMed ID: 32065730 [TBL] [Abstract][Full Text] [Related]
9. Target-capture probes for phylogenomics of the Caenogastropoda. Goulding TC; Strong EE; Quattrini AM Mol Ecol Resour; 2023 Aug; 23(6):1372-1388. PubMed ID: 36997300 [TBL] [Abstract][Full Text] [Related]
10. Identification and assessment of variable single-copy orthologous (SCO) nuclear loci for low-level phylogenomics: a case study in the genus Rosa (Rosaceae). Debray K; Marie-Magdelaine J; Ruttink T; Clotault J; Foucher F; Malécot V BMC Evol Biol; 2019 Jul; 19(1):152. PubMed ID: 31340752 [TBL] [Abstract][Full Text] [Related]
11. Effectiveness of Two Universal Angiosperm Probe Sets Tested In Silico for Caryophyllids Taxa with Emphasis on Cacti Species. Chincoya DA; Solórzano S Genes (Basel); 2022 Mar; 13(4):. PubMed ID: 35456376 [TBL] [Abstract][Full Text] [Related]
12. Developing Asparagaceae1726: An Asparagaceae-specific probe set targeting 1726 loci for Hyb-Seq and phylogenomics in the family. Bentz PC; Leebens-Mack J Appl Plant Sci; 2024; 12(5):e11597. PubMed ID: 39360194 [TBL] [Abstract][Full Text] [Related]
13. Lineage-specific vs. universal: A comparison of the Compositae1061 and Angiosperms353 enrichment panels in the sunflower family. Siniscalchi CM; Hidalgo O; Palazzesi L; Pellicer J; Pokorny L; Maurin O; Leitch IJ; Forest F; Baker WJ; Mandel JR Appl Plant Sci; 2021 Jul; 9(7):. PubMed ID: 34336403 [TBL] [Abstract][Full Text] [Related]
14. High-throughput identification of informative nuclear loci for shallow-scale phylogenetics and phylogeography. Lemmon AR; Lemmon EM Syst Biol; 2012 Oct; 61(5):745-61. PubMed ID: 22610088 [TBL] [Abstract][Full Text] [Related]
15. Development of single-copy nuclear intron markers for species-level phylogenetics: Case study with Paullinieae (Sapindaceae). Chery JG; Sass C; Specht CD Appl Plant Sci; 2017 Sep; 5(9):. PubMed ID: 28989824 [TBL] [Abstract][Full Text] [Related]
16. A target enrichment probe set for resolving the flagellate land plant tree of life. Breinholt JW; Carey SB; Tiley GP; Davis EC; Endara L; McDaniel SF; Neves LG; Sessa EB; von Konrat M; Chantanaorrapint S; Fawcett S; Ickert-Bond SM; Labiak PH; Larraín J; Lehnert M; Lewis LR; Nagalingum NS; Patel N; Rensing SA; Testo W; Vasco A; Villarreal JC; Williams EW; Burleigh JG Appl Plant Sci; 2021 Jan; 9(1):e11406. PubMed ID: 33552748 [TBL] [Abstract][Full Text] [Related]
17. Hyb-Seq: Combining target enrichment and genome skimming for plant phylogenomics. Weitemier K; Straub SC; Cronn RC; Fishbein M; Schmickl R; McDonnell A; Liston A Appl Plant Sci; 2014 Sep; 2(9):. PubMed ID: 25225629 [TBL] [Abstract][Full Text] [Related]
18. A protocol for targeted enrichment of intron-containing sequence markers for recent radiations: A phylogenomic example from Heuchera (Saxifragaceae). Folk RA; Mandel JR; Freudenstein JV Appl Plant Sci; 2015 Aug; 3(8):. PubMed ID: 26312196 [TBL] [Abstract][Full Text] [Related]
19. A two-tier bioinformatic pipeline to develop probes for target capture of nuclear loci with applications in Melastomataceae. Jantzen JR; Amarasinghe P; Folk RA; Reginato M; Michelangeli FA; Soltis DE; Cellinese N; Soltis PS Appl Plant Sci; 2020 May; 8(5):e11345. PubMed ID: 32477841 [TBL] [Abstract][Full Text] [Related]
20. A pipeline for assembling low copy nuclear markers from plant genome skimming data for phylogenetic use. Reginato M PeerJ; 2022; 10():e14525. PubMed ID: 36523475 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]