These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 38106612)
1. Using alternative SMILES representations to identify novel functional analogues in chemical similarity vector searches. Kosonocky CW; Feller AL; Wilke CO; Ellington AD Patterns (N Y); 2023 Dec; 4(12):100865. PubMed ID: 38106612 [TBL] [Abstract][Full Text] [Related]
2. BigSMARTS: A Topologically Aware Query Language and Substructure Search Algorithm for Polymer Chemical Structures. Rebello NJ; Lin TS; Nazeer H; Olsen BD J Chem Inf Model; 2023 Nov; 63(21):6555-6568. PubMed ID: 37874026 [TBL] [Abstract][Full Text] [Related]
3. Comparing a Query Compound with Drug Target Classes Using 3D-Chemical Similarity. Lee SH; Ahn S; Kim MH Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32545691 [TBL] [Abstract][Full Text] [Related]
4. Knowledge-based BERT: a method to extract molecular features like computational chemists. Wu Z; Jiang D; Wang J; Zhang X; Du H; Pan L; Hsieh CY; Cao D; Hou T Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35438145 [TBL] [Abstract][Full Text] [Related]
5. A comparative study of SMILES-based compound similarity functions for drug-target interaction prediction. Öztürk H; Ozkirimli E; Özgür A BMC Bioinformatics; 2016 Mar; 17():128. PubMed ID: 26987649 [TBL] [Abstract][Full Text] [Related]
6. Pushing the Boundaries of Molecular Property Prediction for Drug Discovery with Multitask Learning BERT Enhanced by SMILES Enumeration. Zhang XC; Wu CK; Yi JC; Zeng XX; Yang CQ; Lu AP; Hou TJ; Cao DS Research (Wash D C); 2022; 2022():0004. PubMed ID: 39285949 [TBL] [Abstract][Full Text] [Related]
7. Query-Oriented Micro-Video Summarization. Jia M; Wei Y; Song X; Sun T; Zhang M; Nie L IEEE Trans Pattern Anal Mach Intell; 2024 Jun; 46(6):4174-4187. PubMed ID: 38236680 [TBL] [Abstract][Full Text] [Related]
8. SymDex: increasing the efficiency of chemical fingerprint similarity searches for comparing large chemical libraries by using query set indexing. Tai D; Fang J J Chem Inf Model; 2012 Aug; 52(8):1926-35. PubMed ID: 22849555 [TBL] [Abstract][Full Text] [Related]
9. Difficulty in chirality recognition for Transformer architectures learning chemical structures from string representations. Yoshikai Y; Mizuno T; Nemoto S; Kusuhara H Nat Commun; 2024 Feb; 15(1):1197. PubMed ID: 38365821 [TBL] [Abstract][Full Text] [Related]
10. Transfer Learning: Making Retrosynthetic Predictions Based on a Small Chemical Reaction Dataset Scale to a New Level. Bai R; Zhang C; Wang L; Yao C; Ge J; Duan H Molecules; 2020 May; 25(10):. PubMed ID: 32438572 [TBL] [Abstract][Full Text] [Related]
11. In silico toxicity prediction by support vector machine and SMILES representation-based string kernel. Cao DS; Zhao JC; Yang YN; Zhao CX; Yan J; Liu S; Hu QN; Xu QS; Liang YZ SAR QSAR Environ Res; 2012 Jan; 23(1-2):141-53. PubMed ID: 22224501 [TBL] [Abstract][Full Text] [Related]
12. Bioisosteric similarity of molecules based on structural alignment and observed chemical replacements in drugs. Krier M; Hutter MC J Chem Inf Model; 2009 May; 49(5):1280-97. PubMed ID: 19402687 [TBL] [Abstract][Full Text] [Related]
13. High-dimensional similarity searches using query driven dynamic quantization and distributed indexing. Guzun G; Canahuate G Distrib Parallel Databases; 2020; 38():255-286. PubMed ID: 32863590 [TBL] [Abstract][Full Text] [Related]
14. A BERT-based pretraining model for extracting molecular structural information from a SMILES sequence. Zheng X; Tomiura Y J Cheminform; 2024 Jun; 16(1):71. PubMed ID: 38898528 [TBL] [Abstract][Full Text] [Related]
15. De Novo Molecule Design by Translating from Reduced Graphs to SMILES. Pogány P; Arad N; Genway S; Pickett SD J Chem Inf Model; 2019 Mar; 59(3):1136-1146. PubMed ID: 30525594 [TBL] [Abstract][Full Text] [Related]
16. Improving Measures of Chemical Structural Similarity Using Machine Learning on Chemical-Genetic Interactions. Safizadeh H; Simpkins SW; Nelson J; Li SC; Piotrowski JS; Yoshimura M; Yashiroda Y; Hirano H; Osada H; Yoshida M; Boone C; Myers CL J Chem Inf Model; 2021 Sep; 61(9):4156-4172. PubMed ID: 34318674 [TBL] [Abstract][Full Text] [Related]
17. Advancing drug-target interaction prediction: a comprehensive graph-based approach integrating knowledge graph embedding and ProtBert pretraining. Djeddi WE; Hermi K; Ben Yahia S; Diallo G BMC Bioinformatics; 2023 Dec; 24(1):488. PubMed ID: 38114937 [TBL] [Abstract][Full Text] [Related]
18. Identifying the Perceived Severity of Patient-Generated Telemedical Queries Regarding COVID: Developing and Evaluating a Transfer Learning-Based Solution. Gatto J; Seegmiller P; Johnston G; Preum SM JMIR Med Inform; 2022 Sep; 10(9):e37770. PubMed ID: 35981230 [TBL] [Abstract][Full Text] [Related]
19. Exploring Chemical Information in PubChem. Kim S Curr Protoc; 2021 Aug; 1(8):e217. PubMed ID: 34370395 [TBL] [Abstract][Full Text] [Related]
20. Improving protein structure similarity searches using domain boundaries based on conserved sequence information. Thompson KE; Wang Y; Madej T; Bryant SH BMC Struct Biol; 2009 May; 9():33. PubMed ID: 19454035 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]