These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 38107173)

  • 1. Stabilized cyclic peptides as modulators of protein-protein interactions: promising strategies and biological evaluation.
    Cheng J; Zhou J; Kong L; Wang H; Zhang Y; Wang X; Liu G; Chu Q
    RSC Med Chem; 2023 Dec; 14(12):2496-2508. PubMed ID: 38107173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide therapeutics: targeting the undruggable space.
    Tsomaia N
    Eur J Med Chem; 2015 Apr; 94():459-70. PubMed ID: 25591543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein Domain Mimics as Modulators of Protein-Protein Interactions.
    Sawyer N; Watkins AM; Arora PS
    Acc Chem Res; 2017 Jun; 50(6):1313-1322. PubMed ID: 28561588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging roles of allosteric modulators in the regulation of protein-protein interactions (PPIs): A new paradigm for PPI drug discovery.
    Ni D; Lu S; Zhang J
    Med Res Rev; 2019 Nov; 39(6):2314-2342. PubMed ID: 30957264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting intracellular protein-protein interactions with cell-permeable cyclic peptides.
    Qian Z; Dougherty PG; Pei D
    Curr Opin Chem Biol; 2017 Jun; 38():80-86. PubMed ID: 28388463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive peptidomimetic libraries targeting protein-protein interactions.
    Whitby LR; Boger DL
    Acc Chem Res; 2012 Oct; 45(10):1698-709. PubMed ID: 22799570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic and Macrocyclic Peptides as Chemical Tools To Recognise Protein Surfaces and Probe Protein-Protein Interactions.
    Cardote TA; Ciulli A
    ChemMedChem; 2016 Apr; 11(8):787-94. PubMed ID: 26563831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a Backbone Cyclic Peptide Library as Potential Antiparasitic Therapeutics Using Microwave Irradiation.
    Qvit N; Kornfeld OS
    J Vis Exp; 2016 Jan; (107):e53589. PubMed ID: 26863382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stapled Peptides Inhibitors: A New Window for Target Drug Discovery.
    Ali AM; Atmaj J; Van Oosterwijk N; Groves MR; Dömling A
    Comput Struct Biotechnol J; 2019; 17():263-281. PubMed ID: 30867891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo designed library of linear helical peptides: an exploratory tool in the discovery of protein-protein interaction modulators.
    Bonache MÁ; Balsera B; López-Méndez B; Millet O; Brancaccio D; Gómez-Monterrey I; Carotenuto A; Pavone LM; Reille-Seroussi M; Gagey-Eilstein N; Vidal M; de la Torre-Martinez R; Fernández-Carvajal A; Ferrer-Montiel A; García-López MT; Martín-Martínez M; de Vega MJ; González-Muñiz R
    ACS Comb Sci; 2014 May; 16(5):250-8. PubMed ID: 24725184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allosteric Modulators of Protein-Protein Interactions (PPIs).
    Ni D; Liu N; Sheng C
    Adv Exp Med Biol; 2019; 1163():313-334. PubMed ID: 31707709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclic Peptides for Protein-Protein Interaction Targets: Applications to Human Disease.
    Rubin S; Qvit N
    Crit Rev Eukaryot Gene Expr; 2016; 26(3):199-221. PubMed ID: 27650985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rational Design of Peptide-Based Inhibitors Disrupting Protein-Protein Interactions.
    Wang X; Ni D; Liu Y; Lu S
    Front Chem; 2021; 9():682675. PubMed ID: 34017824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational methods-guided design of modulators targeting protein-protein interactions (PPIs).
    Qiu Y; Li X; He X; Pu J; Zhang J; Lu S
    Eur J Med Chem; 2020 Dec; 207():112764. PubMed ID: 32871340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of Cyclic Peptides Targeting Protein-Protein Interactions Using AlphaFold.
    Kosugi T; Ohue M
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37686057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting "Undruggable" Proteins: Design of Synthetic Cyclopeptides.
    Russo A; Aiello C; Grieco P; Marasco D
    Curr Med Chem; 2016; 23(8):748-62. PubMed ID: 26758797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing Cell-Permeable Peptide Therapeutics That Enter the Cell by Endocytosis.
    Pei D
    ACS Symp Ser Am Chem Soc; 2022; 1417():179-197. PubMed ID: 37621949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulating Protein-Protein Interactions by Cyclic and Macrocyclic Peptides. Prominent Strategies and Examples.
    González-Muñiz R; Bonache MÁ; Pérez de Vega MJ
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33467010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding Cell Penetration of Cyclic Peptides.
    Dougherty PG; Sahni A; Pei D
    Chem Rev; 2019 Sep; 119(17):10241-10287. PubMed ID: 31083977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond N-Alkylation: Synthesis, Structure, and Function of N-Amino Peptides.
    Angera IJ; Wright MM; Del Valle JR
    Acc Chem Res; 2024 May; 57(9):1287-1297. PubMed ID: 38626119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.