BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38107622)

  • 21. Brain PET motion correction using 3D face-shape model: the first clinical study.
    Iwao Y; Akamatsu G; Tashima H; Takahashi M; Yamaya T
    Ann Nucl Med; 2022 Oct; 36(10):904-912. PubMed ID: 35854178
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The design and implementation of a motion correction scheme for neurological PET.
    Bloomfield PM; Spinks TJ; Reed J; Schnorr L; Westrip AM; Livieratos L; Fulton R; Jones T
    Phys Med Biol; 2003 Apr; 48(8):959-78. PubMed ID: 12741495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automatic Inter-Frame Patient Motion Correction for Dynamic Cardiac PET Using Deep Learning.
    Shi L; Lu Y; Dvornek N; Weyman CA; Miller EJ; Sinusas AJ; Liu C
    IEEE Trans Med Imaging; 2021 Dec; 40(12):3293-3304. PubMed ID: 34018932
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Attenuation correction in 4D-PET using a single-phase attenuation map and rigidity-adaptive deformable registration.
    Kalantari F; Wang J
    Med Phys; 2017 Feb; 44(2):522-532. PubMed ID: 27987223
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Motion compensation for brain PET imaging using wireless MR active markers in simultaneous PET-MR: phantom and non-human primate studies.
    Huang C; Ackerman JL; Petibon Y; Normandin MD; Brady TJ; El Fakhri G; Ouyang J
    Neuroimage; 2014 May; 91():129-37. PubMed ID: 24418501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conditional Generative Adversarial Networks Aided Motion Correction of Dynamic
    Shiyam Sundar LK; Iommi D; Muzik O; Chalampalakis Z; Klebermass EM; Hienert M; Rischka L; Lanzenberger R; Hahn A; Pataraia E; Traub-Weidinger T; Hummel J; Beyer T
    J Nucl Med; 2021 Jun; 62(6):871-879. PubMed ID: 33246982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MC
    Lee J; Kim B; Park H
    Magn Reson Med; 2021 Aug; 86(2):1077-1092. PubMed ID: 33720462
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Virtual high-count PET image generation using a deep learning method.
    Liu J; Ren S; Wang R; Mirian N; Tsai YJ; Kulon M; Pucar D; Chen MK; Liu C
    Med Phys; 2022 Sep; 49(9):5830-5840. PubMed ID: 35880541
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of subject head motion on quantitative brain (15)O PET and its correction by image-based registration algorithm.
    Matsubara K; Ibaraki M; Nakamura K; Yamaguchi H; Umetsu A; Kinoshita F; Kinoshita T
    Ann Nucl Med; 2013 May; 27(4):335-45. PubMed ID: 23359244
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Respiratory Motion Compensation for PET/CT with Motion Information Derived from Matched Attenuation-Corrected Gated PET Data.
    Lu Y; Fontaine K; Mulnix T; Onofrey JA; Ren S; Panin V; Jones J; Casey ME; Barnett R; Kench P; Fulton R; Carson RE; Liu C
    J Nucl Med; 2018 Sep; 59(9):1480-1486. PubMed ID: 29439015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct attenuation correction of brain PET images using only emission data via a deep convolutional encoder-decoder (Deep-DAC).
    Shiri I; Ghafarian P; Geramifar P; Leung KH; Ghelichoghli M; Oveisi M; Rahmim A; Ay MR
    Eur Radiol; 2019 Dec; 29(12):6867-6879. PubMed ID: 31227879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motion correction and its impact on quantification in dynamic total-body 18F-fluorodeoxyglucose PET.
    Sun T; Wu Y; Wei W; Fu F; Meng N; Chen H; Li X; Bai Y; Wang Z; Ding J; Hu D; Chen C; Hu Z; Liang D; Liu X; Zheng H; Yang Y; Zhou Y; Wang M
    EJNMMI Phys; 2022 Sep; 9(1):62. PubMed ID: 36104468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Motion correction of PET brain images through deconvolution: II. Practical implementation and algorithm optimization.
    Raghunath N; Faber TL; Suryanarayanan S; Votaw JR
    Phys Med Biol; 2009 Feb; 54(3):813-29. PubMed ID: 19131667
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A deep learning approach for
    Liu F; Jang H; Kijowski R; Zhao G; Bradshaw T; McMillan AB
    EJNMMI Phys; 2018 Nov; 5(1):24. PubMed ID: 30417316
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D PET image reconstruction including both motion correction and registration directly into an MR or stereotaxic spatial atlas.
    Gravel P; Verhaeghe J; Reader AJ
    Phys Med Biol; 2013 Jan; 58(1):105-26. PubMed ID: 23221063
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Joint cardiac and respiratory motion estimation for motion-corrected cardiac PET-MR.
    Kolbitsch C; Neji R; Fenchel M; Schuh A; Mallia A; Marsden P; Schaeffter T
    Phys Med Biol; 2018 Dec; 64(1):015007. PubMed ID: 30566409
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quasi-supervised learning for super-resolution PET.
    Yang G; Li C; Yao Y; Wang G; Teng Y
    Comput Med Imaging Graph; 2024 Apr; 113():102351. PubMed ID: 38335784
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Methods for motion correction evaluation using 18F-FDG human brain scans on a high-resolution PET scanner.
    Keller SH; Sibomana M; Olesen OV; Svarer C; Holm S; Andersen FL; Højgaard L
    J Nucl Med; 2012 Mar; 53(3):495-504. PubMed ID: 22331217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Marker-free optical stereo motion tracking for in-bore MRI and PET-MRI application.
    Kyme AZ; Aksoy M; Henry DL; Bammer R; Maclaren J
    Med Phys; 2020 Aug; 47(8):3321-3331. PubMed ID: 32329076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Markerless rat head motion tracking using structured light for brain PET imaging of unrestrained awake small animals.
    Miranda A; Staelens S; Stroobants S; Verhaeghe J
    Phys Med Biol; 2017 Mar; 62(5):1744-1758. PubMed ID: 28102175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.