These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 38107922)
41. Curcumin and Apigenin - novel and promising therapeutics against chronic neuroinflammation in Alzheimer's disease. Venigalla M; Gyengesi E; Münch G Neural Regen Res; 2015 Aug; 10(8):1181-5. PubMed ID: 26487830 [TBL] [Abstract][Full Text] [Related]
42. Identification of a kinetically significant anion binding (KISAB) site in the N-lobe of human serum transferrin. Byrne SL; Steere AN; Chasteen ND; Mason AB Biochemistry; 2010 May; 49(19):4200-7. PubMed ID: 20397659 [TBL] [Abstract][Full Text] [Related]
43. The crystal structure of iron-free human serum transferrin provides insight into inter-lobe communication and receptor binding. Wally J; Halbrooks PJ; Vonrhein C; Rould MA; Everse SJ; Mason AB; Buchanan SK J Biol Chem; 2006 Aug; 281(34):24934-44. PubMed ID: 16793765 [TBL] [Abstract][Full Text] [Related]
44. Interlobe communication in human serum transferrin: metal binding and conformational dynamics investigated by electrospray ionization mass spectrometry. Gumerov DR; Mason AB; Kaltashov IA Biochemistry; 2003 May; 42(18):5421-8. PubMed ID: 12731884 [TBL] [Abstract][Full Text] [Related]
45. Competition between Al Ott DB; Hartwig A; Stillman MJ Metallomics; 2019 May; 11(5):968-981. PubMed ID: 30916671 [TBL] [Abstract][Full Text] [Related]
46. Analysis of the interaction behavior between Nano-Curcumin and two human serum proteins: combining spectroscopy and molecular stimulation to understand protein-protein interaction. Mokaberi P; Babayan-Mashhadi F; Amiri Tehrani Zadeh Z; Saberi MR; Chamani J J Biomol Struct Dyn; 2021 Jun; 39(9):3358-3377. PubMed ID: 32397834 [TBL] [Abstract][Full Text] [Related]
47. Ti(IV) uptake and release by human serum transferrin and recognition of Ti(IV)-transferrin by cancer cells: understanding the mechanism of action of the anticancer drug titanocene dichloride. Guo M; Sun H; McArdle HJ; Gambling L; Sadler PJ Biochemistry; 2000 Aug; 39(33):10023-33. PubMed ID: 10955990 [TBL] [Abstract][Full Text] [Related]
48. Mechanistic Insight into the Binding of Huperzine a with Human Transferrin: Computational, Spectroscopic and Calorimetric Approaches. Atiya A; Alhumaydhi FA; Shamsi A; Olatunde A; Alsagaby SA; Al Abdulmonem W; Sharaf SE; Shahwan M ACS Omega; 2022 Nov; 7(43):38361-38370. PubMed ID: 36340147 [TBL] [Abstract][Full Text] [Related]
49. Composition of pH-sensitive triad in C-lobe of human serum transferrin. Comparison to sequences of ovotransferrin and lactoferrin provides insight into functional differences in iron release. Halbrooks PJ; Giannetti AM; Klein JS; Björkman PJ; Larouche JR; Smith VC; MacGillivray RT; Everse SJ; Mason AB Biochemistry; 2005 Nov; 44(47):15451-60. PubMed ID: 16300393 [TBL] [Abstract][Full Text] [Related]
51. Dual role of Lys206-Lys296 interaction in human transferrin N-lobe: iron-release trigger and anion-binding site. He QY; Mason AB; Tam BM; MacGillivray RT; Woodworth RC Biochemistry; 1999 Jul; 38(30):9704-11. PubMed ID: 10423249 [TBL] [Abstract][Full Text] [Related]
52. Identification of Human Acetylcholinesterase Inhibitors from the Constituents of EGb761 by Modeling Docking and Molecular Dynamics Simulations. Zhang L; Li D; Cao F; Xiao W; Zhao L; Ding G; Wang ZZ Comb Chem High Throughput Screen; 2018; 21(1):41-49. PubMed ID: 29173156 [TBL] [Abstract][Full Text] [Related]
53. The protective role of transferrin in Müller glial cells after iron-induced toxicity. Picard E; Fontaine I; Jonet L; Guillou F; Behar-Cohen F; Courtois Y; Jeanny JC Mol Vis; 2008 May; 14():928-41. PubMed ID: 18509548 [TBL] [Abstract][Full Text] [Related]
54. Spectroscopic, calorimetric and in silico insight into the molecular interactions of Memantine with human transferrin: Implications of Alzheimer's drugs. Shamsi A; Shahwan M; Alhumaydhi FA; Alwashmi ASS; Aljasir MA; Alsagaby SA; Al Abdulmonem W; Hassan MI; Islam A Int J Biol Macromol; 2021 Nov; 190():660-666. PubMed ID: 34508722 [TBL] [Abstract][Full Text] [Related]
55. Management of oxidative stress and other pathologies in Alzheimer's disease. Simunkova M; Alwasel SH; Alhazza IM; Jomova K; Kollar V; Rusko M; Valko M Arch Toxicol; 2019 Sep; 93(9):2491-2513. PubMed ID: 31440798 [TBL] [Abstract][Full Text] [Related]
56. Inhibition of Microtubule Affinity Regulating Kinase 4 by Metformin: Exploring the Neuroprotective Potential of Antidiabetic Drug through Spectroscopic and Computational Approaches. Ashraf GM; DasGupta D; Alam MZ; Baeesa SS; Alghamdi BS; Anwar F; Alqurashi TMA; Sharaf SE; Al Abdulmonem W; Alyousef MA; Alhumaydhi FA; Shamsi A Molecules; 2022 Jul; 27(14):. PubMed ID: 35889524 [TBL] [Abstract][Full Text] [Related]
57. Detailed molecular dynamics simulations of human transferrin provide insights into iron release dynamics at serum and endosomal pH. Abdizadeh H; Atilgan AR; Atilgan C J Biol Inorg Chem; 2015 Jun; 20(4):705-18. PubMed ID: 25792380 [TBL] [Abstract][Full Text] [Related]
58. Transferrin serves as a mediator to deliver organometallic ruthenium(II) anticancer complexes into cells. Guo W; Zheng W; Luo Q; Li X; Zhao Y; Xiong S; Wang F Inorg Chem; 2013 May; 52(9):5328-38. PubMed ID: 23586415 [TBL] [Abstract][Full Text] [Related]
59. The effect of the skeleton structure of flavanone and flavonoid on interaction with transferrin. Zhang XF; Han RM; Sun XR; Li GY; Yang QF; Li Q; Gai W; Zhang M; Chen L; Yang G; Tang YL Bioorg Med Chem Lett; 2013 Dec; 23(24):6677-81. PubMed ID: 24239187 [TBL] [Abstract][Full Text] [Related]
60. Incorporation of 5-hydroxytryptophan into transferrin and its receptor allows assignment of the pH induced changes in intrinsic fluorescence when iron is released. James NG; Byrne SL; Mason AB Biochim Biophys Acta; 2009 Mar; 1794(3):532-40. PubMed ID: 19103311 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]