These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38107938)

  • 1. Simultaneous Growth Strategy of High-Optical-Efficiency GaN NWs on a Wide Range of Substrates by Pulsed Laser Deposition.
    Almalawi D; Lopatin S; Edwards PR; Xin B; Subedi RC; Najmi MA; Alreshidi F; Genovese A; Iida D; Wehbe N; Ooi BS; Ohkawa K; Martin RW; Roqan IS
    ACS Omega; 2023 Dec; 8(49):46804-46815. PubMed ID: 38107938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembled GaN nanowires on diamond.
    Schuster F; Furtmayr F; Zamani R; Magén C; Morante JR; Arbiol J; Garrido JA; Stutzmann M
    Nano Lett; 2012 May; 12(5):2199-204. PubMed ID: 22506554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coaxial In(x)Ga(1-x)N/GaN multiple quantum well nanowire arrays on Si(111) substrate for high-performance light-emitting diodes.
    Ra YH; Navamathavan R; Park JH; Lee CR
    Nano Lett; 2013 Aug; 13(8):3506-16. PubMed ID: 23701263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and optical properties of self-assembled AlN nanowires grown on SiO
    Gačević Ž; Grandal J; Guo Q; Kirste R; Varela M; Sitar Z; Sánchez García MA
    Nanotechnology; 2021 May; 32(19):195601. PubMed ID: 33535196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of an AlN seeding layer on nucleation of self-assembled GaN nanowires on silicon substrates.
    Wu Y; Liu B; Li Z; Tao T; Xie Z; Wang K; Xiu X; Chen D; Lu H; Zhang R; Zheng Y
    Nanotechnology; 2020 Jan; 31(4):045604. PubMed ID: 31578003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-quality uniaxial In(x)Ga(1-x)N/GaN multiple quantum well (MQW) nanowires (NWs) on Si(111) grown by metal-organic chemical vapor deposition (MOCVD) and light-emitting diode (LED) fabrication.
    Ra YH; Navamathavan R; Park JH; Lee CR
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2111-7. PubMed ID: 23432423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epitaxial Growth of GaN Core and InGaN/GaN Multiple Quantum Well Core/Shell Nanowires on a Thermally Conductive Beryllium Oxide Substrate.
    Johar MA; Waseem A; Hassan MA; Bagal IV; Abdullah A; Ha JS; Lee JK; Ryu SW
    ACS Omega; 2020 Jul; 5(28):17753-17760. PubMed ID: 32715262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced UV Emission of GaN Nanowires Functionalized by Wider Band Gap Solution-Processed p-MnO Quantum Dots.
    Almalawi D; Lopatin S; Mitra S; Flemban T; Siladie AM; Gayral B; Daudin B; Roqan IS
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34058-34064. PubMed ID: 32623885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalyst-Free Vertical ZnO-Nanotube Array Grown on p-GaN for UV-Light-Emitting Devices.
    Alwadai N; Ajia IA; Janjua B; Flemban TH; Mitra S; Wehbe N; Wei N; Lopatin S; Ooi BS; Roqan IS
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):27989-27996. PubMed ID: 31343859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triaxially uniform high-quality Al
    Sarkar R; Ghosh K; Bhunia S; Nag D; Khiangte KR; Laha A
    Nanotechnology; 2019 Feb; 30(6):065603. PubMed ID: 30530937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallographic orientation control and optical properties of GaN nanowires.
    Wu S; Wang L; Yi X; Liu Z; Yan J; Yuan G; Wei T; Wang J; Li J
    RSC Adv; 2018 Jan; 8(4):2181-2187. PubMed ID: 35542617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, Structural and Magnetic Properties of Cobalt-Doped GaN Nanowires on Si by Atmospheric Pressure Chemical Vapor Deposition.
    Feng ZC; Liu YL; Yiin J; Chen LC; Chen KH; Klein B; Ferguson IT
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation.
    Hwang JS; Liu TY; Chattopadhyay S; Hsu GM; Basilio AM; Chen HW; Hsu YK; Tu WH; Lin YG; Chen KH; Li CC; Wang SB; Chen HY; Chen LC
    Nanotechnology; 2013 Feb; 24(5):055401. PubMed ID: 23324138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Horizontal GaN nanowires grown on Si (111) substrate: the effect of catalyst migration and coalescence.
    Wu S; Wang L; Liu Z; Yi X; Wang Y; Cheng C; Lin C; Feng T; Zhang S; Li T; Wei T; Yan J; Yuan G; Wang J; Li J
    Nanotechnology; 2019 Jan; 30(4):045604. PubMed ID: 30485254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compatibility of the selective area growth of GaN nanowires on AlN-buffered Si substrates with the operation of light emitting diodes.
    Musolino M; Tahraoui A; Fernández-Garrido S; Brandt O; Trampert A; Geelhaar L; Riechert H
    Nanotechnology; 2015 Feb; 26(8):085605. PubMed ID: 25656795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Efficient and Flexible Photosensors with GaN Nanowires Horizontally Embedded in a Graphene Sandwich Channel.
    Han S; Lee SK; Choi I; Song J; Lee CR; Kim K; Ryu MY; Jeong KU; Kim JS
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38173-38182. PubMed ID: 30360044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Growth Method To Improve the Quality of GaAs Nanowires Grown by Ga-Assisted Chemical Beam Epitaxy.
    García Núñez C; Braña AF; López N; García BJ
    Nano Lett; 2018 Jun; 18(6):3608-3615. PubMed ID: 29739187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Au-assisted epitaxy of nearly strain-free GaN films on sapphire substrates.
    Li P; Xiong T; Wang L; Sun S; Chen C
    RSC Adv; 2020 Jan; 10(4):2096-2103. PubMed ID: 35494563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Temperature PLD-Growth of Ultrathin ZnO Nanowires by Using Zn
    Shkurmanov A; Sturm C; Franke H; Lenzner J; Grundmann M
    Nanoscale Res Lett; 2017 Dec; 12(1):134. PubMed ID: 28235370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular beam epitaxial growth of dilute nitride GaNAs and GaInNAs nanowires.
    Yukimune M; Fujiwara R; Mita T; Tsuda N; Natsui J; Shimizu Y; Jansson M; Balagula R; Chen WM; Buyanova IA; Ishikawa F
    Nanotechnology; 2019 Jun; 30(24):244002. PubMed ID: 30794991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.