BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 38108117)

  • 1. Designing salt stress-resilient crops: Current progress and future challenges.
    Liang X; Li J; Yang Y; Jiang C; Guo Y
    J Integr Plant Biol; 2024 Mar; 66(3):303-329. PubMed ID: 38108117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering salinity tolerance in plants: progress and prospects.
    Wani SH; Kumar V; Khare T; Guddimalli R; Parveda M; Solymosi K; Suprasanna P; Kavi Kishor PB
    Planta; 2020 Mar; 251(4):76. PubMed ID: 32152761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of natural genetic variation identifies multiple genes involved in salt tolerance in maize.
    Sandhu D; Pudussery MV; Kumar R; Pallete A; Markley P; Bridges WC; Sekhon RS
    Funct Integr Genomics; 2020 Mar; 20(2):261-275. PubMed ID: 31522293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salinity stress tolerance and omics approaches: revisiting the progress and achievements in major cereal crops.
    Kumar P; Choudhary M; Halder T; Prakash NR; Singh V; V VT; Sheoran S; T RK; Longmei N; Rakshit S; Siddique KHM
    Heredity (Edinb); 2022 Jun; 128(6):497-518. PubMed ID: 35249098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blurring the boundaries between cereal crops and model plants.
    Borrill P
    New Phytol; 2020 Dec; 228(6):1721-1727. PubMed ID: 31571228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated genome-editing toolkit to enhance salt stress tolerance in rice and wheat.
    Nazir R; Mandal S; Mitra S; Ghorai M; Das N; Jha NK; Majumder M; Pandey DK; Dey A
    Physiol Plant; 2022 Mar; 174(2):e13642. PubMed ID: 35099818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Gγ protein regulates alkaline sensitivity in crops.
    Zhang H; Yu F; Xie P; Sun S; Qiao X; Tang S; Chen C; Yang S; Mei C; Yang D; Wu Y; Xia R; Li X; Lu J; Liu Y; Xie X; Ma D; Xu X; Liang Z; Feng Z; Huang X; Yu H; Liu G; Wang Y; Li J; Zhang Q; Chen C; Ouyang Y; Xie Q
    Science; 2023 Mar; 379(6638):eade8416. PubMed ID: 36952416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in studies on ion transporters involved in salt tolerance and breeding crop cultivars with high salt tolerance.
    Huang L; Wu DZ; Zhang GP
    J Zhejiang Univ Sci B; 2020 Jun; 21(6):426-441. PubMed ID: 32478490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ectopic expression of finger millet calmodulin confers drought and salinity tolerance in Arabidopsis thaliana.
    Jamra G; Agarwal A; Singh N; Sanyal SK; Kumar A; Pandey GK
    Plant Cell Rep; 2021 Nov; 40(11):2205-2223. PubMed ID: 34250550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances and Challenges in the Breeding of Salt-Tolerant Rice.
    Qin H; Li Y; Huang R
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33182265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into Salinity Tolerance in Wheat.
    Zhang Z; Xia Z; Zhou C; Wang G; Meng X; Yin P
    Genes (Basel); 2024 Apr; 15(5):. PubMed ID: 38790202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Halophytes and other molecular strategies for the generation of salt-tolerant crops.
    Barros NLF; Marques DN; Tadaiesky LBA; de Souza CRB
    Plant Physiol Biochem; 2021 May; 162():581-591. PubMed ID: 33773233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the Transcriptomics of Crop Wild Relatives to Unravel the Salinity Stress Adaptive Mechanisms.
    Abdul Aziz M; Masmoudi K
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37372961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant clock modifications for adapting flowering time to local environments.
    Maeda AE; Nakamichi N
    Plant Physiol; 2022 Sep; 190(2):952-967. PubMed ID: 35266545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salinity stress response and 'omics' approaches for improving salinity stress tolerance in major grain legumes.
    Jha UC; Bohra A; Jha R; Parida SK
    Plant Cell Rep; 2019 Mar; 38(3):255-277. PubMed ID: 30637478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wheat
    Wang Y; Zhang Y; An Y; Wu J; He S; Sun L; Hao F
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives.
    Shelake RM; Kadam US; Kumar R; Pramanik D; Singh AK; Kim JY
    Plant Commun; 2022 Nov; 3(6):100417. PubMed ID: 35927945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants.
    Horie T; Hauser F; Schroeder JI
    Trends Plant Sci; 2009 Dec; 14(12):660-8. PubMed ID: 19783197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salt tolerance involved candidate genes in rice: an integrative meta-analysis approach.
    Mirdar Mansuri R; Shobbar ZS; Babaeian Jelodar N; Ghaffari M; Mohammadi SM; Daryani P
    BMC Plant Biol; 2020 Oct; 20(1):452. PubMed ID: 33004003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances and opportunities in unraveling cold-tolerance mechanisms in the world's primary staple food crops.
    Jan S; Rustgi S; Barmukh R; Shikari AB; Leske B; Bekuma A; Sharma D; Ma W; Kumar U; Kumar U; Bohra A; Varshney RK; Mir RR
    Plant Genome; 2024 Mar; 17(1):e20402. PubMed ID: 37957947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.