These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38108130)
41. Inverse-electron demand Diels Alder Reactions between glycals and tetrazines. Marzabadi CH; Kelty SP; Altamura A Carbohydr Res; 2022 Sep; 519():108623. PubMed ID: 35738050 [TBL] [Abstract][Full Text] [Related]
42. Radiolabelling of peptides with tetrazine ligation based on the inverse electron-demand Diels-Alder reaction: rapid, catalyst-free and mild conversion of 1,4-dihydropyridazines to pyridazines. Otaru S; Martinmäki T; Kuurne I; Paulus A; Helariutta K; Sarparanta M; Airaksinen AJ RSC Adv; 2023 Jul; 13(32):22606-22615. PubMed ID: 37501774 [TBL] [Abstract][Full Text] [Related]
44. Inverse-Electron-Demand Diels-Alder Reactions for the Synthesis of Pyridazines on DNA. Li H; Sun Z; Wu W; Wang X; Zhang M; Lu X; Zhong W; Dai D Org Lett; 2018 Nov; 20(22):7186-7191. PubMed ID: 30365326 [TBL] [Abstract][Full Text] [Related]
45. Site-Specific Glycoconjugation of Protein via Bioorthogonal Tetrazine Cycloaddition with a Genetically Encoded trans-Cyclooctene or Bicyclononyne. Machida T; Lang K; Xue L; Chin JW; Winssinger N Bioconjug Chem; 2015 May; 26(5):802-6. PubMed ID: 25897481 [TBL] [Abstract][Full Text] [Related]
47. Inverse electron demand Diels-Alder reactions in chemical biology. Oliveira BL; Guo Z; Bernardes GJL Chem Soc Rev; 2017 Aug; 46(16):4895-4950. PubMed ID: 28660957 [TBL] [Abstract][Full Text] [Related]
48. Amino acids with fluorescent tetrazine ethers as bioorthogonal handles for peptide modification. Ros E; Bellido M; Matarin JA; Gallen A; Martínez M; Rodríguez L; Verdaguer X; Ribas de Pouplana L; Riera A RSC Adv; 2022 May; 12(23):14321-14327. PubMed ID: 35702248 [TBL] [Abstract][Full Text] [Related]
49. Bioorthogonal Retro-Cope Elimination Reaction of Kang D; Kim J J Am Chem Soc; 2021 Apr; 143(15):5616-5621. PubMed ID: 33829777 [TBL] [Abstract][Full Text] [Related]
50. A Dehydrogenative Inverse Electron Demand Diels-Alder Reaction for the Synthesis of Functionalized Pyranones. Sharif A; Sun HR; Xu WL; Gou BB; Yang L; Li Y; Chen J; Zhou L Org Lett; 2022 Jun; 24(24):4316-4321. PubMed ID: 35699407 [TBL] [Abstract][Full Text] [Related]
51. Inverse Electron Demand Diels-Alder Reactions in the Liposomal Membrane Accelerates Release of the Encapsulated Drugs. Kannaka K; Sano K; Nakahara H; Munekane M; Hagimori M; Yamasaki T; Mukai T Langmuir; 2020 Sep; 36(36):10750-10755. PubMed ID: 32830502 [TBL] [Abstract][Full Text] [Related]
52. Phosphorogenic Iridium(III) bis-Tetrazine Complexes for Bioorthogonal Peptide Stapling, Bioimaging, Photocytotoxic Applications, and the Construction of Nanosized Hydrogels. Yip AM; Lai CK; Yiu KS; Lo KK Angew Chem Int Ed Engl; 2022 Apr; 61(16):e202116078. PubMed ID: 35119163 [TBL] [Abstract][Full Text] [Related]
53. Surface patterning with natural and synthetic polymers via an inverse electron demand Diels-Alder reaction employing microcontact chemistry. Roling O; Mardyukov A; Lamping S; Vonhören B; Rinnen S; Arlinghaus HF; Studer A; Ravoo BJ Org Biomol Chem; 2014 Oct; 12(39):7828-35. PubMed ID: 25166737 [TBL] [Abstract][Full Text] [Related]
54. Copper-free click reactions with polar bicyclononyne derivatives for modulation of cellular imaging. Leunissen EH; Meuleners MH; Verkade JM; Dommerholt J; Hoenderop JG; van Delft FL Chembiochem; 2014 Jul; 15(10):1446-51. PubMed ID: 24904006 [TBL] [Abstract][Full Text] [Related]
55. Arginine-selective bioconjugation with 4-azidophenyl glyoxal: application to the single and dual functionalisation of native antibodies. Dovgan I; Erb S; Hessmann S; Ursuegui S; Michel C; Muller C; Chaubet G; Cianférani S; Wagner A Org Biomol Chem; 2018 Feb; 16(8):1305-1311. PubMed ID: 29388667 [TBL] [Abstract][Full Text] [Related]
56. The Diels-Alder-reaction with inverse-electron-demand, a very efficient versatile click-reaction concept for proper ligation of variable molecular partners. Wiessler M; Waldeck W; Kliem C; Pipkorn R; Braun K Int J Med Sci; 2009 Dec; 7(1):19-28. PubMed ID: 20046231 [TBL] [Abstract][Full Text] [Related]
57. Design, Synthesis, Conjugation, and Reactivity of Novel Longo B; Zanato C; Piras M; Dall'Angelo S; Windhorst AD; Vugts DJ; Baldassarre M; Zanda M Bioconjug Chem; 2020 Sep; 31(9):2201-2210. PubMed ID: 32786505 [TBL] [Abstract][Full Text] [Related]
58. Efficient labelling of enzymatically synthesized vinyl-modified DNA by an inverse-electron-demand Diels-Alder reaction. Busskamp H; Batroff E; Niederwieser A; Abdel-Rahman OS; Winter RF; Wittmann V; Marx A Chem Commun (Camb); 2014 Sep; 50(74):10827-9. PubMed ID: 25089682 [TBL] [Abstract][Full Text] [Related]
59. Norbornenes in inverse electron-demand Diels-Alder reactions. Vrabel M; Kölle P; Brunner KM; Gattner MJ; López-Carrillo V; de Vivie-Riedle R; Carell T Chemistry; 2013 Sep; 19(40):13309-12. PubMed ID: 24027163 [TBL] [Abstract][Full Text] [Related]
60. Domino Aza-Michael-ih-Diels-Alder Reaction to Various 3-Vinyl-1,2,4-triazines: Access to Polysubstituted Tetrahydro-1,6-naphthyridines. Jouha J; Buttard F; Lorion M; Berthonneau C; Khouili M; Hiebel MA; Guillaumet G; Brière JF; Suzenet F Org Lett; 2017 Sep; 19(18):4770-4773. PubMed ID: 28857570 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]