BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38108205)

  • 1. Elastic/viscoelastic polymer bilayers: a model-based approach to stretch-responsive constructs.
    Mills AS; Chou E; Baierl Z; Daltorio KA; Wnek GE
    Soft Matter; 2024 Jan; 20(2):407-420. PubMed ID: 38108205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelasticity of cross-linked actin networks: experimental tests, mechanical modeling and finite-element analysis.
    Unterberger MJ; Schmoller KM; Wurm C; Bausch AR; Holzapfel GA
    Acta Biomater; 2013 Jul; 9(7):7343-53. PubMed ID: 23523535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On Applicability of the Relaxation Spectrum of Fractional Maxwell Model to Description of Unimodal Relaxation Spectra of Polymers.
    Stankiewicz A
    Polymers (Basel); 2023 Aug; 15(17):. PubMed ID: 37688179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Necking and drawing of rubber-plastic bilayer laminates.
    Ramachandran RG; Hariharakrishnan S; Fortunato R; Abramowitch SD; Maiti S; Velankar SS
    Soft Matter; 2018 Jun; 14(24):4977-4986. PubMed ID: 29855018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and finite element analysis of tethered bilayer lipid structures.
    Kwak KJ; Valincius G; Liao WC; Hu X; Wen X; Lee A; Yu B; Vanderah DJ; Lu W; Lee LJ
    Langmuir; 2010 Dec; 26(23):18199-208. PubMed ID: 20977245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment.
    Gültekin O; Sommer G; Holzapfel GA
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(15):1647-64. PubMed ID: 27146848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bending, curling, and twisting in polymeric bilayers.
    Wisinger CE; Maynard LA; Barone JR
    Soft Matter; 2019 Jun; 15(22):4541-4547. PubMed ID: 31099375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of stress relaxation of a semi-crystalline multiblock copolymer and its deformation behavior.
    Yan W; Fang L; Heuchel M; Kratz K; Lendlein A
    Clin Hemorheol Microcirc; 2015; 60(1):109-20. PubMed ID: 25818160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloidal Particles that Rapidly Change Shape via Elastic Instabilities.
    Epstein E; Yoon J; Madhukar A; Hsia KJ; Braun PV
    Small; 2015 Dec; 11(45):6051-7. PubMed ID: 26449185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-Dependent Testing Evaluation and Modeling for Rubber Stopper Seal Performance.
    Zeng Q; Zhao X
    PDA J Pharm Sci Technol; 2018; 72(2):134-148. PubMed ID: 29158288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastic deformation of membrane bilayers probed by deuterium NMR relaxation.
    Brown MF; Thurmond RL; Dodd SW; Otten D; Beyer K
    J Am Chem Soc; 2002 Jul; 124(28):8471-84. PubMed ID: 12105929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelastic properties of doxorubicin-treated HT-29 cancer cells by atomic force microscopy: the fractional Zener model as an optimal viscoelastic model for cells.
    Rodríguez-Nieto M; Mendoza-Flores P; García-Ortiz D; Montes-de-Oca LM; Mendoza-Villa M; Barrón-González P; Espinosa G; Menchaca JL
    Biomech Model Mechanobiol; 2020 Jun; 19(3):801-813. PubMed ID: 31784917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An orthotropic viscoelastic material model for passive myocardium: theory and algorithmic treatment.
    Cansız FB; Dal H; Kaliske M
    Comput Methods Biomech Biomed Engin; 2015 Aug; 18(11):1160-1172. PubMed ID: 24533658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and Numerical Evaluations of Localized Stress Relaxation for Vulcanized Rubber.
    Sukcharoen K; Noraphaiphipaksa N; Hasap A; Kanchanomai C
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheological characterization of human brain tissue.
    Budday S; Sommer G; Haybaeck J; Steinmann P; Holzapfel GA; Kuhl E
    Acta Biomater; 2017 Sep; 60():315-329. PubMed ID: 28658600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the effects of lipid contamination in poly(styrene-isobutylene-styrene) (SIBS).
    Fittipaldi M; Grace LR
    J Mech Behav Biomed Mater; 2018 Apr; 80():97-103. PubMed ID: 29414481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extensional rheological data from ex-situ measurements for predicting porous media behaviour of the viscoelastic EOR polymers.
    Azad MS; Trivedi JJ
    Data Brief; 2018 Oct; 20():293-305. PubMed ID: 30167437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ratchetlike motion of helical bilayers induced by boundary constraints.
    Tanaka M; Wang X; Mishra CK; Cai J; Feng J; Kamien RD; Yodh AG
    Phys Rev E; 2022 Jul; 106(1):L012605. PubMed ID: 35974533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A combined experimental, modeling, and computational approach to interpret the viscoelastic response of the white matter brain tissue during indentation.
    Samadi-Dooki A; Voyiadjis GZ; Stout RW
    J Mech Behav Biomed Mater; 2018 Jan; 77():24-33. PubMed ID: 28888930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite-difference and integral schemes for Maxwell viscous stress calculation in immersed boundary simulations of viscoelastic membranes.
    Li P; Zhang J
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2667-2681. PubMed ID: 32621160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.