These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 38108269)

  • 1. Transferable Machine Learning Interatomic Potential for Bond Dissociation Energy Prediction of Drug-like Molecules.
    Gelžinytė E; Öeren M; Segall MD; Csányi G
    J Chem Theory Comput; 2024 Jan; 20(1):164-177. PubMed ID: 38108269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of organic homolytic bond dissociation enthalpies at near chemical accuracy with sub-second computational cost.
    St John PC; Guan Y; Kim Y; Kim S; Paton RS
    Nat Commun; 2020 May; 11(1):2328. PubMed ID: 32393773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predissociation Measurements of Bond Dissociation Energies.
    Morse MD
    Acc Chem Res; 2019 Jan; 52(1):119-126. PubMed ID: 30596416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bond dissociation energies in second-row compounds.
    Grant DJ; Matus MH; Switzer JR; Dixon DA; Francisco JS; Christe KO
    J Phys Chem A; 2008 Apr; 112(14):3145-56. PubMed ID: 18351757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BonDNet: a graph neural network for the prediction of bond dissociation energies for charged molecules.
    Wen M; Blau SM; Spotte-Smith EWC; Dwaraknath S; Persson KA
    Chem Sci; 2020 Dec; 12(5):1858-1868. PubMed ID: 34163950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of carbon-hydrogen bond dissociation energies on the prediction of the cytochrome P450 mediated major metabolic site of drug-like compounds.
    Drew KL; Reynisson J
    Eur J Med Chem; 2012 Oct; 56():48-55. PubMed ID: 22960693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A big data approach to the ultra-fast prediction of DFT-calculated bond energies.
    Qu X; Latino DA; Aires-de-Sousa J
    J Cheminform; 2013; 5():34. PubMed ID: 23849655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate bond dissociation enthalpies by using doubly hybrid XYG3 functional.
    Zhang IY; Wu J; Luo Y; Xu X
    J Comput Chem; 2011 Jul; 32(9):1824-38. PubMed ID: 21455960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant potential of glutathione: a theoretical study.
    Fiser B; Szori M; Jójárt B; Izsák R; Csizmadia IG; Viskolcz B
    J Phys Chem B; 2011 Sep; 115(38):11269-77. PubMed ID: 21853966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational study of bond dissociation enthalpies for substituted β-O-4 lignin model compounds.
    Younker JM; Beste A; Buchanan AC
    Chemphyschem; 2011 Dec; 12(18):3556-65. PubMed ID: 22065478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling pyranose ring pucker in carbohydrates using machine learning and semi-empirical quantum chemical methods.
    Kong L; Bryce RA
    J Comput Chem; 2022 Nov; 43(30):2009-2022. PubMed ID: 36165294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enthalpies of formation, bond dissociation energies, and molecular structures of the n-aldehydes (acetaldehyde, propanal, butanal, pentanal, hexanal, and heptanal) and their radicals.
    da Silva G; Bozzelli JW
    J Phys Chem A; 2006 Dec; 110(48):13058-67. PubMed ID: 17134166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for predicting likely sites of CYP3A4-mediated metabolism on drug-like molecules.
    Singh SB; Shen LQ; Walker MJ; Sheridan RP
    J Med Chem; 2003 Apr; 46(8):1330-6. PubMed ID: 12672233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition from hydrogen atom to hydride abstraction by Mn4O4(O2PPh2)6 versus [Mn4O4(O2PPh2)6]+: O-H bond dissociation energies and the formation of Mn4O3(OH)(O2PPh2)6.
    Carrell TG; Bourles E; Lin M; Dismukes GC
    Inorg Chem; 2003 May; 42(9):2849-58. PubMed ID: 12716176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinguishing ionic and radical mechanisms of hydroxylamine mediated electrocatalytic alcohol oxidation using NO-H bond dissociation energies.
    Dao R; Zhao C; Yao J; Li H
    Phys Chem Chem Phys; 2018 Nov; 20(44):28249-28256. PubMed ID: 30398250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bond Energies and Thermochemical Properties of Ring-Opened Diradicals and Carbenes of exo-Tricyclo[5.2.1.0(2,6)]decane.
    Hudzik JM; Castillo Á; Bozzelli JW
    J Phys Chem A; 2015 Sep; 119(38):9857-78. PubMed ID: 26295335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemistry of the t-butoxyl radical: evidence that most hydrogen abstractions from carbon are entropy-controlled.
    Finn M; Friedline R; Suleman NK; Wohl CJ; Tanko JM
    J Am Chem Soc; 2004 Jun; 126(24):7578-84. PubMed ID: 15198605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an ONIOM-G3B3 method to accurately predict C-H and N-H bond dissociation enthalpies of ribonucleosides and deoxyribonucleosides.
    Li MJ; Liu L; Fu Y; Guo QX
    J Phys Chem B; 2005 Jul; 109(28):13818-26. PubMed ID: 16852730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Bond Dissociation Energy of the N-O Bond.
    Bach RD; Schlegel HB
    J Phys Chem A; 2021 Jun; 125(23):5014-5021. PubMed ID: 34086470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QDπ: A Quantum Deep Potential Interaction Model for Drug Discovery.
    Zeng J; Tao Y; Giese TJ; York DM
    J Chem Theory Comput; 2023 Feb; 19(4):1261-1275. PubMed ID: 36696673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.