These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38108489)

  • 1. Formate dehydrogenase activity by a Cu(II)-based molecular catalyst and deciphering the mechanism using DFT studies.
    Mishra A; Srivastava D; Raj D; Patra N; Padhi SK
    Dalton Trans; 2024 Jan; 53(3):1209-1220. PubMed ID: 38108489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an N,N'-Diimine Ligand.
    Guan C; Zhang DD; Pan Y; Iguchi M; Ajitha MJ; Hu J; Li H; Yao C; Huang MH; Min S; Zheng J; Himeda Y; Kawanami H; Huang KW
    Inorg Chem; 2017 Jan; 56(1):438-445. PubMed ID: 27983821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient dehydrogenation of a formic acid-ammonium formate mixture over Au
    Guo XT; Zhang J; Chi JC; Li ZH; Liu YC; Liu XR; Zhang SY
    RSC Adv; 2019 Feb; 9(11):5995-6002. PubMed ID: 35517262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pd
    Lee WJ; Hwang YJ; Kim J; Jeong H; Yoon CW
    Chemphyschem; 2019 May; 20(10):1382-1391. PubMed ID: 30706621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dehydrogenation of formic acid using iridium-NSi species as catalyst precursors.
    Guzmán J; Urriolabeitia A; Polo V; Fernández-Buenestado M; Iglesias M; Fernández-Alvarez FJ
    Dalton Trans; 2022 Mar; 51(11):4386-4393. PubMed ID: 35194624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Intermolecular Interactions in the Catalytic Reaction of Formic Acid on Cu(111).
    Shiotari A; Putra SEM; Shiozawa Y; Hamamoto Y; Inagaki K; Morikawa Y; Sugimoto Y; Yoshinobu J; Hamada I
    Small; 2021 May; 17(20):e2008010. PubMed ID: 33759365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The roles of step-site and zinc in surface chemistry of formic acid on clean and Zn-modified Cu(111) and Cu(997) surfaces studied by HR-XPS, TPD, and IRAS.
    Shiozawa Y; Koitaya T; Mukai K; Yoshimoto S; Yoshinobu J
    J Chem Phys; 2020 Jan; 152(4):044703. PubMed ID: 32007070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective Photocatalytic Dehydrogenation of Formic Acid by an
    Issa Hamoud H; Damacet P; Fan D; Assaad N; Lebedev OI; Krystianiak A; Gouda A; Heintz O; Daturi M; Maurin G; Hmadeh M; El-Roz M
    J Am Chem Soc; 2022 Sep; 144(36):16433-16446. PubMed ID: 36047929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomically Dispersed Cobalt/Copper Dual-Metal Catalysts for Synergistically Boosting Hydrogen Generation from Formic Acid.
    Shi Y; Luo B; Liu R; Sang R; Cui D; Junge H; Du Y; Zhu T; Beller M; Li X
    Angew Chem Int Ed Engl; 2023 Oct; 62(43):e202313099. PubMed ID: 37694769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic Insight into Bis(amino) Copper Formate Thermochemistry for Conductive Molecular Ink Design.
    Shin H; Liu X; Lacelle T; MacDonell RJ; Schuurman MS; Malenfant PRL; Paquet C
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33039-33049. PubMed ID: 32589833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CO
    Fink C; Laurenczy G
    Dalton Trans; 2017 Jan; 46(5):1670-1676. PubMed ID: 28098294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near thermal, selective liberation of hydrogen from formic acid catalysed by copper hydride ate complexes.
    Ma HZ; Canty AJ; O'Hair RAJ
    Dalton Trans; 2023 Feb; 52(6):1574-1581. PubMed ID: 36656079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen Generation from Additive-Free Formic Acid Decomposition Under Mild Conditions by Pd/C: Experimental and DFT Studies.
    Sanchez F; Motta D; Roldan A; Hammond C; Villa A; Dimitratos N
    Top Catal; 2018; 61(3):254-266. PubMed ID: 30956509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Effective Strategy to Boost Formic Acid Dehydrogenation over Pd/AC-NH
    Jiang S; Shi H; Xu Y; Liu J; Yu T; Ren G
    ACS Appl Mater Interfaces; 2024 Oct; ():. PubMed ID: 39377117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Highly Stable Copper-Based Catalyst for Clarifying the Catalytic Roles of Cu
    Yang H; Chen Y; Cui X; Wang G; Cen Y; Deng T; Yan W; Gao J; Zhu S; Olsbye U; Wang J; Fan W
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1836-1840. PubMed ID: 29314496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisiting Formic Acid Decomposition by a Graph-Theoretical Approach.
    Ida T; Nishida M; Hori Y
    J Phys Chem A; 2019 Nov; 123(44):9579-9586. PubMed ID: 31625743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating oxygen coverage of Ti
    Hou T; Luo Q; Li Q; Zu H; Cui P; Chen S; Lin Y; Chen J; Zheng X; Zhu W; Liang S; Yang J; Wang L
    Nat Commun; 2020 Aug; 11(1):4251. PubMed ID: 32843636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal-Ligand Cooperation in Cp*Ir-Pyridylpyrrole Complexes: Rational Design and Catalytic Activity in Formic Acid Dehydrogenation and CO
    Mo XF; Liu C; Chen ZW; Ma F; He P; Yi XY
    Inorg Chem; 2021 Nov; 60(21):16584-16592. PubMed ID: 34637291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Update on Formic Acid Dehydrogenation by Homogeneous Catalysis.
    Guan C; Pan Y; Zhang T; Ajitha MJ; Huang KW
    Chem Asian J; 2020 Apr; 15(7):937-946. PubMed ID: 32030903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic insights into the dehydrogenation of formaldehyde, formic acid and methanol using the Pt
    Phan TT; Dao LTT; Giang LPT; Nguyen MT; Nguyen HMT
    J Mol Graph Model; 2022 Mar; 111():108096. PubMed ID: 34875503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.