These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 38108600)
1. "Spark" PtMnIr Nanozymes for Electrodynamic-Boosted Multienzymatic Tumor Immunotherapy. Li D; Ha E; Zhou Z; Zhang J; Zhu Y; Ai F; Yan L; He S; Li L; Hu J Adv Mater; 2024 Mar; 36(13):e2308747. PubMed ID: 38108600 [TBL] [Abstract][Full Text] [Related]
2. Remodeling of Tumor Microenvironment by Nanozyme Combined cGAS-STING Signaling Pathway Agonist for Enhancing Cancer Immunotherapy. Dong W; Chen M; Chang C; Jiang T; Su L; Chen C; Zhang G Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762239 [TBL] [Abstract][Full Text] [Related]
3. A Bimetallic Polymerization Network for Effective Increase in Labile Iron Pool and Robust Activation of cGAS/STING Induces Ferroptosis-Based Tumor Immunotherapy. Wang Z; Zhou P; Li Y; Zhang D; Chu F; Yuan F; Pan B; Gao F Small; 2024 May; 20(20):e2308397. PubMed ID: 38072786 [TBL] [Abstract][Full Text] [Related]
4. Defect engineering to tailor structure-activity relationship in biodegradable nanozymes for tumor therapy by dual-channel death strategies. Su Y; Lv M; Huang Z; An N; Chen Y; Wang H; Li Z; Wu S; Ye F; Shen J; Li A J Control Release; 2024 Mar; 367():557-571. PubMed ID: 38301929 [TBL] [Abstract][Full Text] [Related]
5. Nanozyme-Based Enhanced Cancer Immunotherapy. Phan NM; Nguyen TL; Kim J Tissue Eng Regen Med; 2022 Apr; 19(2):237-252. PubMed ID: 35099759 [TBL] [Abstract][Full Text] [Related]
6. Amorphous NiB@IrO Wang Q; Shaik F; Lu X; Zhang W; Wu Y; Qian H; Zhang W Acta Biomater; 2023 Jan; 155():575-587. PubMed ID: 36374661 [TBL] [Abstract][Full Text] [Related]
7. Specific activation of cGAS-STING pathway by nanotherapeutics-mediated ferroptosis evoked endogenous signaling for boosting systemic tumor immunotherapy. Liang JL; Jin XK; Zhang SM; Huang QX; Ji P; Deng XC; Cheng SX; Chen WH; Zhang XZ Sci Bull (Beijing); 2023 Mar; 68(6):622-636. PubMed ID: 36914548 [TBL] [Abstract][Full Text] [Related]
8. Augmenting Immunotherapy via Bioinspired MOF-Based ROS Homeostasis Disruptor with Nanozyme-Cascade Reaction. Wang R; Qiu M; Zhang L; Sui M; Xiao L; Yu Q; Ye C; Chen S; Zhou X Adv Mater; 2023 Dec; 35(49):e2306748. PubMed ID: 37689996 [TBL] [Abstract][Full Text] [Related]
9. Transition-Metal-Oxide-Based Nanozymes for Antitumor Applications. Sun H; Bai Y; Zhao D; Wang J; Qiu L Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930266 [TBL] [Abstract][Full Text] [Related]
10. Nitric oxide-mediated regulation of mitochondrial protective autophagy for enhanced chemodynamic therapy based on mesoporous Mo-doped Cu Zhou Z; Gao Z; Chen W; Wang X; Chen Z; Zheng Z; Chen Q; Tan M; Liu D; Zhang Y; Hou Z Acta Biomater; 2022 Oct; 151():600-612. PubMed ID: 35953045 [TBL] [Abstract][Full Text] [Related]
11. Sm/Co-Doped Silica-Based Nanozymes Reprogram Tumor Microenvironment for ATP-Inhibited Tumor Therapy. Li S; Ding H; Chang J; Liu S; Dong S; Zyuzin MV; Timin AS; Feng L; He F; Gai S; Yang P Adv Healthc Mater; 2023 Sep; 12(24):e2300652. PubMed ID: 37306377 [TBL] [Abstract][Full Text] [Related]
12. Dual enzyme-like Co-FeSe Zhang J; Ha E; Li D; He S; Wang L; Kuang S; Hu J J Mater Chem B; 2023 May; 11(19):4274-4286. PubMed ID: 37140154 [TBL] [Abstract][Full Text] [Related]
13. Confining Prepared Ultrasmall Nanozymes Loading ATO for Lung Cancer Catalytic Therapy/Immunotherapy. Zhang A; Gao A; Zhou C; Xue C; Zhang Q; Fuente JM; Cui D Adv Mater; 2023 Nov; 35(45):e2303722. PubMed ID: 37748441 [TBL] [Abstract][Full Text] [Related]
14. Interfacial strong interaction-enabling cascade nanozymes for apoptosis-ferroptosis synergistic therapy. Wei L; Wang Z; Lu X; Chen J; Zhai Y; Huang Q; Pei S; Liu Y; Zhang W J Colloid Interface Sci; 2024 Jan; 653(Pt A):20-29. PubMed ID: 37708728 [TBL] [Abstract][Full Text] [Related]
15. Engineering a synergistic antioxidant inhibition nanoplatform to enhance oxidative damage in tumor treatment. Zhang Q; Sun Z; Sun W; Yu B; Liu J; Jiang C; Lu L Acta Biomater; 2023 Mar; 158():625-636. PubMed ID: 36608895 [TBL] [Abstract][Full Text] [Related]
16. Cu-GA-coordination polymer nanozymes with triple enzymatic activity for wound disinfection and accelerated wound healing. Tian H; Yan J; Zhang W; Li H; Jiang S; Qian H; Chen X; Dai X; Wang X Acta Biomater; 2023 Sep; 167():449-462. PubMed ID: 37270076 [TBL] [Abstract][Full Text] [Related]
17. Tumor microenvironment-responsive nanozymes achieve photothermal-enhanced multiple catalysis against tumor hypoxia. Lv W; Cao M; Liu J; Hei Y; Bai J Acta Biomater; 2021 Nov; 135():617-627. PubMed ID: 34407474 [TBL] [Abstract][Full Text] [Related]
18. Self-Assembled Copper-Based Nanoparticles for Glutathione Activated and Enzymatic Cascade-Enhanced Ferroptosis and Immunotherapy in Cancer Treatment. Song WF; Zeng JY; Ji P; Han ZY; Sun YX; Zhang XZ Small; 2023 Aug; 19(35):e2301148. PubMed ID: 37118853 [TBL] [Abstract][Full Text] [Related]
19. Triple Tumor Microenvironment-Responsive Ferroptosis Pathways Induced by Manganese-Based Imageable Nanoenzymes for Enhanced Breast Cancer Theranostics. He H; Du L; Xue H; An Y; Zeng K; Huang H; He Y; Zhang C; Wu J; Shuai X Small Methods; 2023 Jul; 7(7):e2300230. PubMed ID: 37096886 [TBL] [Abstract][Full Text] [Related]
20. Modulation of the Tumor Immune Microenvironment by Bi Wu F; Chen H; Liu R; Suo Y; Li Q; Zhang Y; Liu H; Cheng Z; Chang Y Adv Healthc Mater; 2022 Oct; 11(19):e2200809. PubMed ID: 35848849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]