BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 38108600)

  • 21. Single-Atom Nanozyme with Asymmetric Electron Distribution for Tumor Catalytic Therapy by Disrupting Tumor Redox and Energy Metabolism Homeostasis.
    Liu Y; Wang B; Zhu J; Xu X; Zhou B; Yang Y
    Adv Mater; 2023 Mar; 35(9):e2208512. PubMed ID: 36373624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogen Sulfide Gas Amplified ROS Cascade: FeS@GOx Hybrid Nanozyme Designed for Boosting Tumor Chemodynamic Immunotherapy.
    Sun W; Zhu C; Song J; Ji SC; Jiang BP; Liang H; Shen XC
    Adv Healthc Mater; 2023 Sep; 12(23):e2300385. PubMed ID: 37040018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cu-GA-coordination polymer nanozymes with triple enzymatic activity for wound disinfection and accelerated wound healing.
    Tian H; Yan J; Zhang W; Li H; Jiang S; Qian H; Chen X; Dai X; Wang X
    Acta Biomater; 2023 Sep; 167():449-462. PubMed ID: 37270076
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and Mechanism Insight of Monodispersed AuCuPt Alloy Nanozyme with Antitumor Activity.
    Liu J; Dong S; Gai S; Dong Y; Liu B; Zhao Z; Xie Y; Feng L; Yang P; Lin J
    ACS Nano; 2023 Oct; 17(20):20402-20423. PubMed ID: 37811650
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Responsive manganese-based nanoplatform amplifying cGAS-STING activation for immunotherapy.
    He Q; Zheng R; Ma J; Zhao L; Shi Y; Qiu J
    Biomater Res; 2023 Apr; 27(1):29. PubMed ID: 37061706
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AuPt-Loaded Cu-Doped Polydopamine Nanocomposites with Multienzyme-Mimic Activities for Dual-Modal Imaging-Guided and Cuproptosis-Enhanced Photothermal/Nanocatalytic Therapy.
    Wang YY; Zhang XY; Li SL; Jiang FL; Jiang P; Liu Y
    Anal Chem; 2023 Sep; 95(37):14025-14035. PubMed ID: 37694580
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering a synergistic antioxidant inhibition nanoplatform to enhance oxidative damage in tumor treatment.
    Zhang Q; Sun Z; Sun W; Yu B; Liu J; Jiang C; Lu L
    Acta Biomater; 2023 Mar; 158():625-636. PubMed ID: 36608895
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Screening of Protein-Based Ultrasmall Nanozymes for Building Cell-Mimicking Catalytic Vesicles.
    Wu J; Wei Y; Lan J; Hu X; Gao F; Zhang X; Gao Z; Liu Q; Sun Z; Chen R; Zhao H; Fan K; Yan X; Zhuang J; Huang X
    Small; 2022 Sep; 18(39):e2202145. PubMed ID: 36026572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mild-Photothermal Effect Induced High Efficiency Ferroptosis-Boosted-Cuproptosis Based on Cu
    Chen W; Xie W; Gao Z; Lin C; Tan M; Zhang Y; Hou Z
    Adv Sci (Weinh); 2023 Nov; 10(33):e2303694. PubMed ID: 37822154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Confining Prepared Ultrasmall Nanozymes Loading ATO for Lung Cancer Catalytic Therapy/Immunotherapy.
    Zhang A; Gao A; Zhou C; Xue C; Zhang Q; Fuente JM; Cui D
    Adv Mater; 2023 Nov; 35(45):e2303722. PubMed ID: 37748441
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrathin Clay Nanoparticles-Mediated Mutual Reinforcement of Ferroptosis and Cancer Immunotherapy.
    Liu J; Zhan J; Zhang Y; Huang L; Yang J; Feng J; Ding L; Shen Z; Chen X
    Adv Mater; 2024 Mar; 36(9):e2309562. PubMed ID: 37939375
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tumor Microenvironment-Modulated Nanozymes for NIR-II-Triggered Hyperthermia-Enhanced Photo-Nanocatalytic Therapy via Disrupting ROS Homeostasis.
    Zhu L; Dai Y; Gao L; Zhao Q
    Int J Nanomedicine; 2021; 16():4559-4577. PubMed ID: 34267513
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-Assembled Copper-Based Nanoparticles for Glutathione Activated and Enzymatic Cascade-Enhanced Ferroptosis and Immunotherapy in Cancer Treatment.
    Song WF; Zeng JY; Ji P; Han ZY; Sun YX; Zhang XZ
    Small; 2023 Aug; 19(35):e2301148. PubMed ID: 37118853
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanozyme-based catalytic theranostics.
    Zhang Y; Jin Y; Cui H; Yan X; Fan K
    RSC Adv; 2019 Dec; 10(1):10-20. PubMed ID: 35492517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CuO Nanozymes Catalyze Cysteine and Glutathione Depletion Induced Ferroptosis and Cuproptosis for Synergistic Tumor Therapy.
    Bai J; Zhang X; Zhao Z; Sun S; Cheng W; Yu H; Chang X; Wang B
    Small; 2024 May; ():e2400326. PubMed ID: 38813723
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GSH-Depleted Nanozymes with Hyperthermia-Enhanced Dual Enzyme-Mimic Activities for Tumor Nanocatalytic Therapy.
    Dong S; Dong Y; Jia T; Liu S; Liu J; Yang D; He F; Gai S; Yang P; Lin J
    Adv Mater; 2020 Oct; 32(42):e2002439. PubMed ID: 32914495
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reversing the immunosuppressive microenvironment with reduced redox level by microwave-chemo-immunostimulant Ce-Mn MOF for improved immunotherapy.
    Zeng Z; Fu C; Sun X; Niu M; Ren X; Tan L; Wu Q; Huang Z; Meng X
    J Nanobiotechnology; 2022 Dec; 20(1):512. PubMed ID: 36463157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Supramolecular Nanozyme System Based on Polydopamine and Polyoxometalate for Photothermal-Enhanced Multienzyme Cascade Catalytic Tumor Therapy.
    Zhang Z; Ding D; Liu J; Huang C; Li W; Lu K; Cheng N
    ACS Appl Mater Interfaces; 2023 Aug; 15(32):38214-38229. PubMed ID: 37535452
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MnOOH-Catalyzed Autoxidation of Glutathione for Reactive Oxygen Species Production and Nanocatalytic Tumor Innate Immunotherapy.
    Zhu P; Pu Y; Wang M; Wu W; Qin H; Shi J
    J Am Chem Soc; 2023 Mar; 145(10):5803-5815. PubMed ID: 36848658
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The cyclic guanosine monophosphate synthase-stimulator of interferon genes pathway as a potential target for tumor immunotherapy.
    Chen R; Liu M; Jiang Q; Meng X; Wei J
    Front Immunol; 2023; 14():1121603. PubMed ID: 37153627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.