These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 38108902)
1. Understanding plant responses to saline waterlogging: insights from halophytes and implications for crop tolerance. Martins TS; Da-Silva CJ; Shabala S; Striker GG; Carvalho IR; de Oliveira ACB; do Amarante L Planta; 2023 Dec; 259(1):24. PubMed ID: 38108902 [TBL] [Abstract][Full Text] [Related]
2. Epigenomics in stress tolerance of plants under the climate change. Kumar M; Rani K Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468 [TBL] [Abstract][Full Text] [Related]
3. Adaptive Mechanisms of Halophytes and Their Potential in Improving Salinity Tolerance in Plants. Rahman MM; Mostofa MG; Keya SS; Siddiqui MN; Ansary MMU; Das AK; Rahman MA; Tran LS Int J Mol Sci; 2021 Oct; 22(19):. PubMed ID: 34639074 [TBL] [Abstract][Full Text] [Related]
4. Advances in studies on ion transporters involved in salt tolerance and breeding crop cultivars with high salt tolerance. Huang L; Wu DZ; Zhang GP J Zhejiang Univ Sci B; 2020 Jun; 21(6):426-441. PubMed ID: 32478490 [TBL] [Abstract][Full Text] [Related]
5. The role of halophytic nanoparticles towards the remediation of degraded and saline agricultural lands. Munir N; Hanif M; Dias DA; Abideen Z Environ Sci Pollut Res Int; 2021 Nov; 28(43):60383-60405. PubMed ID: 34532807 [TBL] [Abstract][Full Text] [Related]
6. Understanding the salinity stress on plant and developing sustainable management strategies mediated salt-tolerant plant growth-promoting rhizobacteria and CRISPR/Cas9. Chauhan PK; Upadhyay SK; Tripathi M; Singh R; Krishna D; Singh SK; Dwivedi P Biotechnol Genet Eng Rev; 2023 Oct; 39(2):311-347. PubMed ID: 36254096 [TBL] [Abstract][Full Text] [Related]
7. Physiological and cellular aspects of phytotoxicity tolerance in plants: the role of membrane transporters and implications for crop breeding for waterlogging tolerance. Shabala S New Phytol; 2011 Apr; 190(2):289-98. PubMed ID: 21563365 [TBL] [Abstract][Full Text] [Related]
8. Identification of QTL Related to ROS Formation under Hypoxia and Their Association with Waterlogging and Salt Tolerance in Barley. Gill MB; Zeng F; Shabala L; Zhang G; Yu M; Demidchik V; Shabala S; Zhou M Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30736310 [TBL] [Abstract][Full Text] [Related]
9. Identification of aerenchyma formation-related QTL in barley that can be effective in breeding for waterlogging tolerance. Zhang X; Zhou G; Shabala S; Koutoulis A; Shabala L; Johnson P; Li C; Zhou M Theor Appl Genet; 2016 Jun; 129(6):1167-77. PubMed ID: 26908252 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome analysis reveals ZmERF055 contributes to waterlogging tolerance in sweetcorn. Feng F; Wang Q; Jiang K; Lei D; Huang S; Wu H; Yue G; Wang B Plant Physiol Biochem; 2023 Nov; 204():108087. PubMed ID: 37847974 [TBL] [Abstract][Full Text] [Related]
11. QTLian breeding for climate resilience in cereals: progress and prospects. Choudhary M; Wani SH; Kumar P; Bagaria PK; Rakshit S; Roorkiwal M; Varshney RK Funct Integr Genomics; 2019 Sep; 19(5):685-701. PubMed ID: 31093800 [TBL] [Abstract][Full Text] [Related]
12. An Insight into Abiotic Stress and Influx Tolerance Mechanisms in Plants to Cope in Saline Environments. Gul Z; Tang ZH; Arif M; Ye Z Biology (Basel); 2022 Apr; 11(4):. PubMed ID: 35453796 [TBL] [Abstract][Full Text] [Related]
13. Contrasting response of two Lotus corniculatus L. accessions to combined waterlogging-saline stress. Antonelli CJ; Calzadilla PI; Campestre MP; Escaray FJ; Ruiz OA Plant Biol (Stuttg); 2021 Mar; 23(2):363-374. PubMed ID: 33190297 [TBL] [Abstract][Full Text] [Related]
14. Zinc oxide nanoparticles influence on plant tolerance to salinity stress: insights into physiological, biochemical, and molecular responses. Singh A; Rajput VD; Lalotra S; Agrawal S; Ghazaryan K; Singh J; Minkina T; Rajput P; Mandzhieva S; Alexiou A Environ Geochem Health; 2024 Apr; 46(5):148. PubMed ID: 38578547 [TBL] [Abstract][Full Text] [Related]
15. Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Shabala S Ann Bot; 2013 Nov; 112(7):1209-21. PubMed ID: 24085482 [TBL] [Abstract][Full Text] [Related]
16. Genetic mechanisms of salt stress responses in halophytes. Fan C Plant Signal Behav; 2020; 15(1):1704528. PubMed ID: 31868075 [TBL] [Abstract][Full Text] [Related]
17. Balancing salinity stress responses in halophytes and non-halophytes: a comparison between Thellungiella and Arabidopsis thaliana. Bartels D; Dinakar C Funct Plant Biol; 2013 Aug; 40(9):819-831. PubMed ID: 32481153 [TBL] [Abstract][Full Text] [Related]
18. Plant salt tolerance: adaptations in halophytes. Flowers TJ; Colmer TD Ann Bot; 2015 Feb; 115(3):327-31. PubMed ID: 25844430 [TBL] [Abstract][Full Text] [Related]
19. Waterlogging Stress Induces Antioxidant Defense Responses, Aerenchyma Formation and Alters Metabolisms of Banana Plants. Teoh EY; Teo CH; Baharum NA; Pua TL; Tan BC Plants (Basel); 2022 Aug; 11(15):. PubMed ID: 35956531 [TBL] [Abstract][Full Text] [Related]
20. Halophytes as new model plant species for salt tolerance strategies. Mann A; Lata C; Kumar N; Kumar A; Kumar A; Sheoran P Front Plant Sci; 2023; 14():1137211. PubMed ID: 37251767 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]