These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38109698)

  • 61. Energy-resolved and time-dependent unimolecular dissociation of hydroperoxyalkyl radicals (˙QOOH).
    Bhagde T; Hansen AS; Chen S; Walsh PJ; Klippenstein SJ; Lester MI
    Faraday Discuss; 2022 Oct; 238(0):575-588. PubMed ID: 35785787
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Large Pressure Effects Caused by Internal Rotation in the
    Xia Y; Long B; Lin S; Teng C; Bao JL; Truhlar DG
    J Am Chem Soc; 2022 Mar; 144(11):4828-4838. PubMed ID: 35262353
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Identification of the acetaldehyde oxide Criegee intermediate reaction network in the ozone-assisted low-temperature oxidation of
    Conrad AR; Hansen N; Jasper AW; Thomason NK; Hidaldo-Rodrigues L; Treshock SP; Popolan-Vaida DM
    Phys Chem Chem Phys; 2021 Oct; 23(41):23554-23566. PubMed ID: 34651147
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Nonstatistical Unimolecular Decay of the CH
    Qian Y; Nguyen TL; Franke PR; Stanton JF; Lester MI
    J Phys Chem Lett; 2024 Jun; 15(23):6222-6229. PubMed ID: 38838341
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mechanism of Gas-Phase Ozonolysis of β-Myrcene in the Atmosphere.
    Deng P; Wang L; Wang L
    J Phys Chem A; 2018 Mar; 122(11):3013-3020. PubMed ID: 29509421
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene.
    Nguyen TB; Tyndall GS; Crounse JD; Teng AP; Bates KH; Schwantes RH; Coggon MM; Zhang L; Feiner P; Milller DO; Skog KM; Rivera-Rios JC; Dorris M; Olson KF; Koss A; Wild RJ; Brown SS; Goldstein AH; de Gouw JA; Brune WH; Keutsch FN; Seinfeld JH; Wennberg PO
    Phys Chem Chem Phys; 2016 Apr; 18(15):10241-54. PubMed ID: 27021601
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Infrared identification of the Criegee intermediates syn- and anti-CH₃CHOO, and their distinct conformation-dependent reactivity.
    Lin HY; Huang YH; Wang X; Bowman JM; Nishimura Y; Witek HA; Lee YP
    Nat Commun; 2015 May; 6():7012. PubMed ID: 25959902
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Solving the discrepancy between the direct and relative-rate determinations of unimolecular reaction kinetics of dimethyl-substituted Criegee intermediate (CH
    Peltola J; Seal P; Vuorio N; Heinonen P; Eskola A
    Phys Chem Chem Phys; 2022 Feb; 24(8):5211-5219. PubMed ID: 35167635
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Fourier transform microwave spectroscopy of Criegee intermediates: The conformational behaviour of butyraldehyde oxide.
    Cabezas C; Guillemin JC; Endo Y
    J Chem Phys; 2019 Mar; 150(10):104301. PubMed ID: 30876361
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Roaming-like Mechanism for Dehydration of Diol Radicals.
    Asatryan R; Pal Y; Hachmann J; Ruckenstein E
    J Phys Chem A; 2018 Dec; 122(51):9738-9754. PubMed ID: 30484647
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Communication: spectroscopic characterization of an alkyl substituted Criegee intermediate syn-CH(3)CHOO through pure rotational transitions.
    Nakajima M; Endo Y
    J Chem Phys; 2014 Jan; 140(1):011101. PubMed ID: 24410212
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Theoretical study of the reaction mechanism between Criegee intermediates and hydroxyl radicals in the presence of ammonia and amine.
    Wei Y; Xu F; Ma X; Li L; Wang W; Huo X; Zhang Q; Wang W
    Chemosphere; 2022 Jan; 287(Pt 1):131877. PubMed ID: 34523463
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Perspective: Spectroscopy and kinetics of small gaseous Criegee intermediates.
    Lee YP
    J Chem Phys; 2015 Jul; 143(2):020901. PubMed ID: 26178082
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Catalysis and tunnelling in the unimolecular decay of Criegee intermediates.
    Burd TAH; Shan X; Clary DC
    Phys Chem Chem Phys; 2018 Oct; 20(39):25224-25234. PubMed ID: 30264080
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The reactivity of the Criegee intermediate CH
    Cabezas C; Endo Y
    J Chem Phys; 2018 Jan; 148(1):014308. PubMed ID: 29306294
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Correction to "OH Roaming and Beyond in the Unimolecular Decay of the Methyl-Ethyl-Substituted Criegee Intermediate: Observations and Predictions".
    Liu T; Elliott SN; Zou M; Vansco MF; Sojdak CA; Markus CR; Almeida R; Au K; Sheps L; Osborn DL; Winiberg FAF; Percival CJ; Taatjes CA; Caravan RL; Klippenstein SJ; Lester MI
    J Am Chem Soc; 2024 Jul; 146(26):18184-18185. PubMed ID: 38885117
    [No Abstract]   [Full Text] [Related]  

  • 77. Infrared spectroscopy of the syn-methyl-substituted Criegee intermediate: A combined experimental and theoretical study.
    Zou M; Hassan Y; Roy TK; McCoy AB; Lester MI
    J Chem Phys; 2024 May; 160(20):. PubMed ID: 38818894
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Reaction Kinetics of Criegee Intermediates with Nitric Acid.
    Yang JN; Takahashi K; Lin JJ
    J Phys Chem A; 2022 Sep; 126(36):6160-6170. PubMed ID: 36044562
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Direct Kinetic Measurements of a Cyclic Criegee Intermediate; Unimolecular Decomposition of
    Peltola J; Heinonen P; Eskola A
    J Phys Chem Lett; 2024 May; 15(20):5331-5336. PubMed ID: 38727747
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Rapid unimolecular reaction of stabilized Criegee intermediates and implications for atmospheric chemistry.
    Long B; Bao JL; Truhlar DG
    Nat Commun; 2019 May; 10(1):2003. PubMed ID: 31043594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.