These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38110100)

  • 41. Predator-prey interaction reveals local effects of high-altitude insect migration.
    Krauel JJ; Brown VA; Westbrook JK; McCracken GF
    Oecologia; 2018 Jan; 186(1):49-58. PubMed ID: 29101468
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Decrease in Bat Diversity Points towards a Potential Threshold Density for Black Cherry Management: A Case Study from Germany.
    Geschke J
    Plants (Basel); 2019 Sep; 8(9):. PubMed ID: 31480683
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Short-term effects of a high-severity summer wildfire on conifer forest moth (Lepidoptera) communities in New Mexico, USA.
    Brantley EM; Jones AG; Hodson AM; Brown JW; Pogue MG; Suazo MM; Parmenter RR
    Environ Entomol; 2023 Aug; 52(4):606-617. PubMed ID: 37452672
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High duty cycle pulses suppress orientation flights of crambid moths.
    Nakano R; Ihara F; Mishiro K; Toyama M; Toda S
    J Insect Physiol; 2015 Dec; 83():15-21. PubMed ID: 26549128
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evolutionary escalation: the bat-moth arms race.
    Ter Hofstede HM; Ratcliffe JM
    J Exp Biol; 2016 Jun; 219(Pt 11):1589-602. PubMed ID: 27252453
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The foraging ecology of the mountain long-eared bat Plecotus macrobullaris revealed with DNA mini-barcodes.
    Alberdi A; Garin I; Aizpurua O; Aihartza J
    PLoS One; 2012; 7(4):e35692. PubMed ID: 22545129
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The allergenic protein Tha p 2 of processionary moths of the genus Thaumetopoea (Thaumetopoeinae, Notodontidae, Lepidoptera): Characterization and evolution.
    Berardi L; Battisti A; Negrisolo E
    Gene; 2015 Dec; 574(2):317-24. PubMed ID: 26275941
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Echolocating bats prefer a high risk-high gain foraging strategy to increase prey profitability.
    Stidsholt L; Hubancheva A; Greif S; Goerlitz HR; Johnson M; Yovel Y; Madsen PT
    Elife; 2023 Apr; 12():. PubMed ID: 37070239
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dataset of occurrence and incidence of pine processionary moth in Andalusia, south Spain.
    Ros-Candeira A; Pérez-Luque AJ; Suárez-Muñoz M; Francisco Javier Bonet-García ; Hódar JA; de Azcárate FG; Ortega-Díaz E
    Zookeys; 2019; 852():125-136. PubMed ID: 31210747
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Aerospace-foraging bats eat seasonably across varying habitats.
    Aihartza J; Vallejo N; Aldasoro M; García-Mudarra JL; Goiti U; Nogueras J; Ibáñez C
    Sci Rep; 2023 Nov; 13(1):19576. PubMed ID: 37950015
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Control of pine processionary moth, Thaumetopoea pityocampa with Bacillus thuringiensis in Antalya, Turkey.
    Cebeci HH; Oymen RT; Acer S
    J Environ Biol; 2010 May; 31(3):357-61. PubMed ID: 21047011
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sound strategies: the 65-million-year-old battle between bats and insects.
    Conner WE; Corcoran AJ
    Annu Rev Entomol; 2012; 57():21-39. PubMed ID: 21888517
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adaptations for Substrate Gleaning in Bats: The Pallid Bat as a Case Study.
    Razak KA
    Brain Behav Evol; 2018; 91(2):97-108. PubMed ID: 29874652
    [TBL] [Abstract][Full Text] [Related]  

  • 54. When insect pests build their own thermal niche: The hot nest of the pine processionary moth.
    Poitou L; Robinet C; Suppo C; Rousselet J; Laparie M; Pincebourde S
    J Therm Biol; 2021 May; 98():102947. PubMed ID: 34016364
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sequence, assembly and count datasets of viruses associated to the pine processionary moth
    Dorkeld F; Streiff R; Sauné L; Castel G; Ogliastro M; Kerdelhué C
    Data Brief; 2023 Jun; 48():109180. PubMed ID: 37213549
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spatial patterns of bat diversity overlap with woodpecker abundance.
    Kotowska D; Zegarek M; Osojca G; Satory A; Pärt T; Żmihorski M
    PeerJ; 2020; 8():e9385. PubMed ID: 32596056
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interactions between pupae of the pine processionary moth (Thaumetopoea pityocampa) and parasitoids in a Pinus forest.
    Bonsignore CP; Manti F; Castiglione E
    Bull Entomol Res; 2015 Oct; 105(5):621-8. PubMed ID: 26104534
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Auditory sensitivity of Hawaiian moths (Lepidoptera: Noctuidae) and selective predation by the Hawaiian hoary bat (Chiroptera: Lasiurus cinereus semotus).
    Fullard JH
    Proc Biol Sci; 2001 Jul; 268(1474):1375-80. PubMed ID: 11429137
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Processionary Moths and Associated Urtication Risk: Global Change-Driven Effects.
    Battisti A; Larsson S; Roques A
    Annu Rev Entomol; 2017 Jan; 62():323-342. PubMed ID: 27860523
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pine processionary moth outbreaks cause longer growth legacies than drought and are linked to the North Atlantic Oscillation.
    Camarero JJ; Tardif J; Gazol A; Conciatori F
    Sci Total Environ; 2022 May; 819():153041. PubMed ID: 35038538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.