These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38110247)

  • 21. Rheostats, toggles, and neutrals, Oh my! A new framework for understanding how amino acid changes modulate protein function.
    Swint-Kruse L; Fenton AW
    J Biol Chem; 2024 Mar; 300(3):105736. PubMed ID: 38336297
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein fragments: functional and structural roles of their coevolution networks.
    Dib L; Carbone A
    PLoS One; 2012; 7(11):e48124. PubMed ID: 23139761
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d".
    Tripet B; Wagschal K; Lavigne P; Mant CT; Hodges RS
    J Mol Biol; 2000 Jul; 300(2):377-402. PubMed ID: 10873472
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contact prediction is hardest for the most informative contacts, but improves with the incorporation of contact potentials.
    Holland J; Pan Q; Grigoryan G
    PLoS One; 2018; 13(6):e0199585. PubMed ID: 29953468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A coevolutionary residue network at the site of a functionally important conformational change in a phosphohexomutase enzyme family.
    Lee Y; Mick J; Furdui C; Beamer LJ
    PLoS One; 2012; 7(6):e38114. PubMed ID: 22685552
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Large-scale identification of coevolution signals across homo-oligomeric protein interfaces by direct coupling analysis.
    Uguzzoni G; John Lovis S; Oteri F; Schug A; Szurmant H; Weigt M
    Proc Natl Acad Sci U S A; 2017 Mar; 114(13):E2662-E2671. PubMed ID: 28289198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. De novo structure prediction of globular proteins aided by sequence variation-derived contacts.
    Kosciolek T; Jones DT
    PLoS One; 2014; 9(3):e92197. PubMed ID: 24637808
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Patterns of coevolving amino acids unveil structural and dynamical domains.
    Granata D; Ponzoni L; Micheletti C; Carnevale V
    Proc Natl Acad Sci U S A; 2017 Dec; 114(50):E10612-E10621. PubMed ID: 29183970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CoeViz: a web-based tool for coevolution analysis of protein residues.
    Baker FN; Porollo A
    BMC Bioinformatics; 2016 Mar; 17():119. PubMed ID: 26956673
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From principal component to direct coupling analysis of coevolution in proteins: low-eigenvalue modes are needed for structure prediction.
    Cocco S; Monasson R; Weigt M
    PLoS Comput Biol; 2013; 9(8):e1003176. PubMed ID: 23990764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using analyses of amino Acid coevolution to understand protein structure and function.
    Ashenberg O; Laub MT
    Methods Enzymol; 2013; 523():191-212. PubMed ID: 23422431
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DeepHelicon: Accurate prediction of inter-helical residue contacts in transmembrane proteins by residual neural networks.
    Sun J; Frishman D
    J Struct Biol; 2020 Oct; 212(1):107574. PubMed ID: 32663598
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Small design from big alignment: engineering proteins with multiple sequence alignment as the starting point.
    Wang T; Liang C; Hou Y; Zheng M; Xu H; An Y; Xiao S; Liu L; Lian S
    Biotechnol Lett; 2020 Aug; 42(8):1305-1315. PubMed ID: 32430802
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of contacts from correlated sequence substitutions.
    Taylor WR; Hamilton RS; Sadowski MI
    Curr Opin Struct Biol; 2013 Jun; 23(3):473-9. PubMed ID: 23680395
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-based Markov random field model for representing evolutionary constraints on functional sites.
    Jeong CS; Kim D
    BMC Bioinformatics; 2016 Feb; 17():99. PubMed ID: 26911566
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identifying relevant positions in proteins by Critical Variable Selection.
    Grigolon S; Franz S; Marsili M
    Mol Biosyst; 2016 Jun; 12(7):2147-58. PubMed ID: 26974515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of coevolutionary signatures in protein interaction dynamics, complex inference, molecular recognition, and mutational landscapes.
    Morcos F; Onuchic JN
    Curr Opin Struct Biol; 2019 Jun; 56():179-186. PubMed ID: 31029927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct-Coupling Analysis of nucleotide coevolution facilitates RNA secondary and tertiary structure prediction.
    De Leonardis E; Lutz B; Ratz S; Cocco S; Monasson R; Schug A; Weigt M
    Nucleic Acids Res; 2015 Dec; 43(21):10444-55. PubMed ID: 26420827
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A multi-scale coevolutionary approach to predict interactions between protein domains.
    Croce G; Gueudré T; Ruiz Cuevas MV; Keidel V; Figliuzzi M; Szurmant H; Weigt M
    PLoS Comput Biol; 2019 Oct; 15(10):e1006891. PubMed ID: 31634362
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.