BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38110460)

  • 1. Novel environmental monitoring detector for discriminating fallout and airborne radioactivity.
    Holm P; Ihantola S; Bogdanoff V; Peräjärvi K; Dendooven P; Tengblad O; Muikku M
    Sci Rep; 2023 Dec; 13(1):22550. PubMed ID: 38110460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of phoswich detector-based β+/γ-ray discrimination algorithm with deep learning.
    Kim C; Kim S; Lee Y; Park C; Kim S; Kim HK; Yeom JY
    Med Phys; 2023 Oct; 50(10):6118-6129. PubMed ID: 37469146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low level radioactivity measurements with phoswich detectors using coincident techniques and digital pulse processing analysis.
    de la Fuente R; de Celis B; del Canto V; Lumbreras JM; de Celis Alonso B; Martín-Martín A; Gutierrez-Villanueva JL
    J Environ Radioact; 2008 Oct; 99(10):1553-7. PubMed ID: 18243443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A well typed phoswich detector consisting of CsI and plastic scintillators for low level radioactivity measurements.
    Xu J; Liu J; Chen X
    Appl Radiat Isot; 2021 Mar; 169():109462. PubMed ID: 33383388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an advanced radioactive airborne particle monitoring system for use in early warning networks.
    Baeza A; Corbacho JA; Caballero JM; Ontalba MA; Vasco J; Valencia D
    J Radiol Prot; 2017 Sep; 37(3):642-658. PubMed ID: 28555612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel phoswich imaging detector for simultaneous beta and coincidence-gamma imaging of plant leaves.
    Wu H; Tai YC
    Phys Med Biol; 2011 Sep; 56(17):5583-98. PubMed ID: 21828901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Scintillator Detection Materials for Application within Airborne Environmental Radiation Monitoring.
    Lowdon M; Martin PG; Hubbard MWJ; Taggart MP; Connor DT; Verbelen Y; Sellin PJ; Scott TB
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31487922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation study of a simultaneous beta-gamma-ray detection using a 3-layer phoswich detector and Monte Carlo methods.
    Rahimi MH; Feghhi SAH; Khorsandi M; Jafari H
    Appl Radiat Isot; 2023 Feb; 192():110574. PubMed ID: 36525912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of long rectangular semi-monolithic scintillator PET detectors.
    Zhang X; Wang X; Ren N; Hu B; Ding B; Kuang Z; Wu S; Sang Z; Hu Z; Du J; Liang D; Liu X; Zheng H; Yang Y
    Med Phys; 2019 Apr; 46(4):1608-1619. PubMed ID: 30723932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of environmental factors on the monitoring of environmental radioactivity by airborne gamma-ray spectrometry.
    Amestoy J; Meslin PY; Richon P; Delpuech A; Derrien S; Raynal H; Pique É; Baratoux D; Chotard P; Van Beek P; Souhaut M; Zambardi T
    J Environ Radioact; 2021 Oct; 237():106695. PubMed ID: 34332827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncertainties and characteristic limits of counting and spectrometric dosimetry systems.
    Röttger A; Kessler P
    J Environ Radioact; 2019 Sep; 205-206():48-54. PubMed ID: 31102905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of internal scintillator radioactivity to calibrate DOI function of a PET detector with a dual-ended-scintillator readout.
    Bircher C; Shao Y
    Med Phys; 2012 Feb; 39(2):777-87. PubMed ID: 22320787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and application of a method for discriminating the influence of radon progenies in air from aerial radiation monitoring data.
    Hirouchi J; Nishizawa Y; Urabe Y; Shimada K; Sanada Y; Munakata M
    Appl Radiat Isot; 2018 Nov; 141():122-129. PubMed ID: 30237095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depth of interaction determination in monolithic scintillator with double side SiPM readout.
    Morrocchi M; Ambrosi G; Bisogni MG; Bosi F; Boretto M; Cerello P; Ionica M; Liu B; Pennazio F; Piliero MA; Pirrone G; Postolache V; Wheadon R; Del Guerra A
    EJNMMI Phys; 2017 Dec; 4(1):11. PubMed ID: 28211032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A New Approach for the Determination of Dose Rate and Radioactivity for Detected Gamma Nuclides Using an Environmental Radiation Monitor Based on an NaI(Tl) Detector.
    Ji YY; Kim CJ; Lim KS; Lee W; Chang HS; Chung KH
    Health Phys; 2017 Oct; 113(4):304-314. PubMed ID: 28796752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subtraction of natural radiation contribution from gamma-ray spectra measured by HPGe detector.
    Kovář P; Šolc J
    Appl Radiat Isot; 2018 Apr; 134():167-171. PubMed ID: 28754325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating airborne and ground based gamma spectrometry methods for detecting particulate radioactivity in the environment: a case study of Irish Sea beaches.
    Cresswell AJ; Sanderson DC
    Sci Total Environ; 2012 Oct; 437():285-96. PubMed ID: 22947616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity size distributions of radioactive airborne particles in an arid environment: a case study of Kuwait.
    Ismaeel A; Aba A; Al-Shammari H; Al-Boloushi A; Al-Boloushi O; Malak M; Al-Dabbous A; Al-Tamimi S
    Environ Sci Pollut Res Int; 2020 Sep; 27(26):33032-33041. PubMed ID: 32529611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An edge-readout, multilayer detector for positron emission tomography.
    Li X; Ruiz-Gonzalez M; Furenlid LR
    Med Phys; 2018 Jun; 45(6):2425-2438. PubMed ID: 29635734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectro-dosemeter-based gamma dose rate network in Germany.
    Stöhlker U; Bleher M; Mlinarzik R; Harms W; Luff R; Feuerstein C; Prommer B
    Appl Radiat Isot; 2022 Apr; 182():110077. PubMed ID: 35121275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.