These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38111157)

  • 21. Genome-wide association study of Senegalese sorghum seedlings responding to a Texas isolate of Colletotrichum sublineola.
    Ahn E; Fall C; Prom LK; Magill C
    Sci Rep; 2022 Jul; 12(1):13025. PubMed ID: 35906277
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification and Characterization of
    Koima IN; Kilalo DC; Orek CO; Wagacha JM; Nyaboga EN
    J Fungi (Basel); 2023 Jan; 9(1):. PubMed ID: 36675921
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Global mRNA and microRNA expression dynamics in response to anthracnose infection in sorghum.
    Fu F; Girma G; Mengiste T
    BMC Genomics; 2020 Nov; 21(1):760. PubMed ID: 33143636
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparative genomic analysis of putative pathogenicity genes in the host-specific sibling species Colletotrichum graminicola and Colletotrichum sublineola.
    Buiate EAS; Xavier KV; Moore N; Torres MF; Farman ML; Schardl CL; Vaillancourt LJ
    BMC Genomics; 2017 Jan; 18(1):67. PubMed ID: 28073340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Effects of Epicuticular Wax on Anthracnose Resistance of
    Xiong W; Liao L; Ni Y; Gao H; Yang J; Guo Y
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834482
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic analysis of the response to eleven Colletotrichum lindemuthianum races in a RIL population of common bean (Phaseolus vulgaris L.).
    Campa A; Rodríguez-Suárez C; Giraldez R; Ferreira JJ
    BMC Plant Biol; 2014 Apr; 14():115. PubMed ID: 24779442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Broad-spectrum fungal resistance in sorghum is conferred through the complex regulation of an immune receptor gene embedded in a natural antisense transcript.
    Lee S; Fu F; Liao CJ; Mewa DB; Adeyanju A; Ejeta G; Lisch D; Mengiste T
    Plant Cell; 2022 Apr; 34(5):1641-1665. PubMed ID: 35018449
    [TBL] [Abstract][Full Text] [Related]  

  • 28. First Report of
    Choi HW; Hong SK; Lee Y; Yoon Y
    Plant Dis; 2021 Jan; ():. PubMed ID: 33496604
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Sorghum F-Box Protein Induces an Oxidative Burst in the Defense Against
    Wolf ESA; Vela S; Cuevas HE; Vermerris W
    Phytopathology; 2024 Feb; 114(2):405-417. PubMed ID: 37717251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of genetic diversity, agronomic traits, and anthracnose resistance in the NPGS Sudan Sorghum Core collection.
    Cuevas HE; Prom LK
    BMC Genomics; 2020 Jan; 21(1):88. PubMed ID: 31992189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fine mapping of an anthracnose-resistance locus in Andean common bean cultivar Amendoim Cavalo.
    Gilio TAS; Hurtado-Gonzales OP; Gonçalves-Vidigal MC; Valentini G; Ferreira Elias JC; Song Q; Pastor-Corrales MA
    PLoS One; 2020; 15(10):e0239763. PubMed ID: 33027258
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aggressiveness of Colletotrichum sublineola Strains from Sorghum bicolor and S. halepense to Sweet Sorghum Variety Sugar Drip, and Their Impact on Yield.
    Xavier KV; Pfeiffer T; Parreira DF; Chopra S; Vaillancourt L
    Plant Dis; 2017 Sep; 101(9):1578-1587. PubMed ID: 30677336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome Assembly and Transcriptome of
    Baldrich P; Chaya T; Caplan JL; Meyers BC
    Mol Plant Microbe Interact; 2021 Oct; 34(10):1209-1211. PubMed ID: 34662144
    [No Abstract]   [Full Text] [Related]  

  • 34. The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum.
    Schnippenkoetter W; Lo C; Liu G; Dibley K; Chan WL; White J; Milne R; Zwart A; Kwong E; Keller B; Godwin I; Krattinger SG; Lagudah E
    Plant Biotechnol J; 2017 Nov; 15(11):1387-1396. PubMed ID: 28301718
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of Clusters that Condition Resistance to Anthracnose in the Common Bean Differential Cultivars AB136 and MDRK.
    Campa A; Trabanco N; Ferreira JJ
    Phytopathology; 2017 Dec; 107(12):1515-1521. PubMed ID: 28742459
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of the
    Son S; Kim S; Lee KS; Oh J; Choi I; Do JW; Yoon JB; Han J; Choi D; Park SR
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrating genetic and physical positions of the anthracnose resistance genes described in bean chromosomes Pv01 and Pv04.
    Murube E; Campa A; Ferreira JJ
    PLoS One; 2019; 14(2):e0212298. PubMed ID: 30763410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genome wide association analysis of sorghum mini core lines regarding anthracnose, downy mildew, and head smut.
    Ahn E; Hu Z; Perumal R; Prom LK; Odvody G; Upadhyaya HD; Magill C
    PLoS One; 2019; 14(5):e0216671. PubMed ID: 31086384
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mapping and Genetic Structure Analysis of the Anthracnose Resistance Locus Co-1HY in the Common Bean (Phaseolus vulgaris L.).
    Chen M; Wu J; Wang L; Mantri N; Zhang X; Zhu Z; Wang S
    PLoS One; 2017; 12(1):e0169954. PubMed ID: 28076395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetics and mapping of a new anthracnose resistance locus in Andean common bean Paloma.
    de Lima Castro SA; Gonçalves-Vidigal MC; Gilio TAS; Lacanallo GF; Valentini G; da Silva Ramos Martins V; Song Q; Galván MZ; Hurtado-Gonzales OP; Pastor-Corrales MA
    BMC Genomics; 2017 Apr; 18(1):306. PubMed ID: 28420340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.