BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38111327)

  • 1. Strong Anharmonicity at the Origin of Anomalous Thermal Conductivity in Double Perovskite Cs
    Cappai A; Melis C; Marongiu D; Quochi F; Saba M; Congiu F; He Y; Slade TJ; Kanatzidis MG; Colombo L
    Adv Sci (Weinh); 2024 Mar; 11(9):e2305861. PubMed ID: 38111327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase Stability, Strong Four-Phonon Scattering, and Low Lattice Thermal Conductivity in Superatom-Based Superionic Conductor Na
    Du PH; Zhang C; Sun J; Li T; Sun Q
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47882-47891. PubMed ID: 36239388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscopic Mechanisms of Glasslike Lattice Thermal Transport in Cubic Cu_{12}Sb_{4}S_{13} Tetrahedrites.
    Xia Y; Ozoliņš V; Wolverton C
    Phys Rev Lett; 2020 Aug; 125(8):085901. PubMed ID: 32909770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain effects on phonon transport in antimonene investigated using a first-principles study.
    Zhang AX; Liu JT; Guo SD; Li HC
    Phys Chem Chem Phys; 2017 Jun; 19(22):14520-14526. PubMed ID: 28537286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complex role of strain engineering of lattice thermal conductivity in hydrogenated graphene-like borophene induced by high-order phonon anharmonicity.
    He J; Yu C; Lu S; Shan S; Zhang Z; Chen J
    Nanotechnology; 2023 Oct; 35(2):. PubMed ID: 37804826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anharmonicity and Ultralow Thermal Conductivity in Lead-Free Halide Double Perovskites.
    Klarbring J; Hellman O; Abrikosov IA; Simak SI
    Phys Rev Lett; 2020 Jul; 125(4):045701. PubMed ID: 32794779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Different Phonon Scattering Factors on the Heat Transport Properties of Graphene Ribbons.
    Chen J; Meng L
    ACS Omega; 2022 Jun; 7(23):20186-20194. PubMed ID: 35722022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thickness-Dependent Thermal Conductivity and Phonon Mean Free Path Distribution in Single-Crystalline Barium Titanate.
    Negi A; Rodriguez A; Zhang X; Comstock AH; Yang C; Sun D; Jiang X; Kumah D; Hu M; Liu J
    Adv Sci (Weinh); 2023 Jul; 10(19):e2301273. PubMed ID: 37092575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of finite-temperature and anharmonic lattice dynamics on the thermal conductivity of ZrS
    Pandit A; Hamad B
    J Phys Condens Matter; 2021 Aug; 33(42):. PubMed ID: 34315140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Giant Phonon Anharmonicity and Anomalous Pressure Dependence of Lattice Thermal Conductivity in Y2Si2O7 silicate.
    Luo Y; Wang J; Li Y; Wang J
    Sci Rep; 2016 Jul; 6():29801. PubMed ID: 27430670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of phonon anharmonicity on thermal conductivity of ZnTe Thin films.
    Ghosh K; Ghorai G; Sahoo PK
    J Phys Condens Matter; 2024 Mar; 36(23):. PubMed ID: 38437733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anomalous thermal transport under high pressure in boron arsenide.
    Li S; Qin Z; Wu H; Li M; Kunz M; Alatas A; Kavner A; Hu Y
    Nature; 2022 Dec; 612(7940):459-464. PubMed ID: 36418403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lattice Dynamics and Electron-Phonon Coupling in Double Perovskite Cs
    Zhang B; Klarbring J; Ji F; Simak SI; Abrikosov IA; Gao F; Rudko GY; Chen WM; Buyanova IA
    J Phys Chem C Nanomater Interfaces; 2023 Feb; 127(4):1908-1916. PubMed ID: 36761233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice Thermal Conductivity in XMg
    Wu M; Yang H; Xie F; Huang L
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lower lattice thermal conductivity in SbAs than As or Sb monolayers: a first-principles study.
    Guo SD; Liu JT
    Phys Chem Chem Phys; 2017 Dec; 19(47):31982-31988. PubMed ID: 29177337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of Temperature-Dependent Phonon Anharmonicity and Thermal Transport in SnS Single Crystals.
    Li J; Yan T; Gong X; Zou H; Zhang B; Wu H; Wang G; Zhou X
    J Phys Chem Lett; 2023 Aug; 14(33):7346-7353. PubMed ID: 37561607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusive nature of thermal transport in stanene.
    Nissimagoudar AS; Manjanath A; Singh AK
    Phys Chem Chem Phys; 2016 May; 18(21):14257-63. PubMed ID: 27169141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phonon lifetime investigation of anharmonicity and thermal conductivity of UO2 by neutron scattering and theory.
    Pang JW; Buyers WJ; Chernatynskiy A; Lumsden MD; Larson BC; Phillpot SR
    Phys Rev Lett; 2013 Apr; 110(15):157401. PubMed ID: 25167310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical Investigation on the Microscopic Mechanism of Lattice Thermal Conductivity of ZnXP
    Wei L; Lv X; Yang Y; Xu J; Yu H; Zhang H; Wang X; Liu B; Zhang C; Zhou J
    Inorg Chem; 2019 Apr; 58(7):4320-4327. PubMed ID: 30848900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsic Low Thermal Conductivity and Phonon Renormalization Due to Strong Anharmonicity of Single-Crystal Tin Selenide.
    Kang JS; Wu H; Li M; Hu Y
    Nano Lett; 2019 Aug; 19(8):4941-4948. PubMed ID: 31265307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.