These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38111327)

  • 21. Role of anharmonic strength and number of allowed three-phonon processes in lattice thermal conductivity of SnTe based compounds.
    Keshri SP; Medhi A
    J Phys Condens Matter; 2021 Mar; 33(11):115701. PubMed ID: 33326936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultralow Lattice Thermal Transport and Considerable Wave-like Phonon Tunneling in Chalcogenide Perovskite BaZrS
    Wu Y; Chen Y; Fang Z; Ding Y; Li Q; Xue K; Shao H; Zhang H; Zhou L
    J Phys Chem Lett; 2023 Dec; 14(50):11465-11473. PubMed ID: 38085873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intrinsic sources of high thermal conductivity of CdSiP
    Wei L; Zhang Y; Lv X; Yang Y; Yu H; Hu Y; Zhang H; Wang X; Liu B; Li Q
    Phys Chem Chem Phys; 2018 Jan; 20(3):1568-1574. PubMed ID: 29260168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A first-principles study on the phonon transport in layered BiCuOSe.
    Shao H; Tan X; Liu GQ; Jiang J; Jiang H
    Sci Rep; 2016 Feb; 6():21035. PubMed ID: 26878884
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lone-Electron-Pair Micelles Strengthen Bond Anharmonicity in MnPb
    Dawahre L; Lu R; Djieutedjeu H; Lopez J; Bailey TP; Buchanan B; Yin Z; Uher C; Poudeu PFP
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44991-44997. PubMed ID: 32902948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics--a Comparative Study with Gallium Nitride.
    Wu X; Lee J; Varshney V; Wohlwend JL; Roy AK; Luo T
    Sci Rep; 2016 Mar; 6():22504. PubMed ID: 26928396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultralow lattice thermal conductivity of binary compounds A
    Zeng S; Fang L; Tu Y; Zulfiqar M; Li G
    Phys Chem Chem Phys; 2023 May; 25(17):12157-12164. PubMed ID: 37070719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anharmonic Origin of the Giant Thermal Expansion of NaBr.
    Shen Y; Saunders CN; Bernal CM; Abernathy DL; Manley ME; Fultz B
    Phys Rev Lett; 2020 Aug; 125(8):085504. PubMed ID: 32909782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Twofold rattling mode-induced ultralow thermal conductivity in vacancy-ordered double perovskite Cs
    Jong UG; Kim YS; Ri CH; Kye YH; Pak CJ; Cottenier S; Yu CJ
    Chem Commun (Camb); 2022 Mar; 58(26):4223-4226. PubMed ID: 35275150
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental Phonon Dispersion and Lifetimes of Tetragonal CH
    Ma H; Ma Y; Wang H; Slebodnick C; Alatas A; Urban JJ; Tian Z
    J Phys Chem Lett; 2019 Jan; 10(1):1-6. PubMed ID: 30554507
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Origin of Intrinsically Low Thermal Conductivity in Talnakhite Cu
    Xie H; Su X; Zhang X; Hao S; Bailey TP; Stoumpos CC; Douvalis AP; Hu X; Wolverton C; Dravid VP; Uher C; Tang X; Kanatzidis MG
    J Am Chem Soc; 2019 Jul; 141(27):10905-10914. PubMed ID: 31203611
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-temperature phonon transport properties of SnSe from machine-learning interatomic potential.
    Liu H; Qian X; Bao H; Zhao CY; Gu X
    J Phys Condens Matter; 2021 Jul; 33(40):. PubMed ID: 34256365
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A strain-induced considerable decrease of lattice thermal conductivity in 2D KAgSe with Coulomb interaction.
    Xu Z; Xia Q; Gao G
    Phys Chem Chem Phys; 2022 Oct; 24(40):24917-24923. PubMed ID: 36200432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting the Lattice Thermal Conductivity in Nitride Perovskite LaWN
    Tong Z; Zhang Y; Pecchia A; Yam C; Zhou L; Dumitrică T; Frauenheim T
    Adv Sci (Weinh); 2023 Mar; 10(9):e2205934. PubMed ID: 36683244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pressure effects on the anomalous thermal transport and anharmonic lattice dynamics of CsX (X = Cl, Br, and I).
    Li S; Zeng Z; Pu Y; Chen Y
    Phys Chem Chem Phys; 2022 Dec; 24(48):29961-29965. PubMed ID: 36468690
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lattice Instability and Ultralow Lattice Thermal Conductivity of Layered PbIF.
    Yedukondalu N; Shafique A; Rakesh Roshan SC; Barhoumi M; Muthaiah R; Ehm L; Parise JB; Schwingenschlögl U
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):40738-40748. PubMed ID: 36053500
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermoelectric transport properties of orthorhombic RbBaX (X = Sb, Bi) with strong anharmonicity.
    Song X; Zhao Y; He M; Ni J; Meng S; Dai Z
    J Chem Phys; 2023 Jan; 158(1):014107. PubMed ID: 36610964
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Breaking the Minimum Limit of Thermal Conductivity of Mg
    Hu J; Zhu J; Dong X; Guo M; Sun Y; Shi W; Zhu Y; Wu H; Guo F; Zhang YX; Ge ZH; Zhang Q; Liu Z; Cai W; Sui J
    Small; 2023 Aug; 19(33):e2301382. PubMed ID: 37086113
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrahigh and anisotropic thermal transport in the hybridized monolayer (BC
    Shafique A; Shin YH
    Phys Chem Chem Phys; 2019 Aug; 21(31):17306-17313. PubMed ID: 31353375
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors.
    Morelli DT; Jovovic V; Heremans JP
    Phys Rev Lett; 2008 Jul; 101(3):035901. PubMed ID: 18764265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.