BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 38111664)

  • 1. Validation of an algorithm to assess regular and irregular gait using inertial sensors in healthy and stroke individuals.
    Ensink C; Smulders K; Warnar J; Keijsers N
    PeerJ; 2023; 11():e16641. PubMed ID: 38111664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliability and concurrent validity of spatiotemporal stride characteristics measured with an ankle-worn sensor among older individuals.
    Rantalainen T; Pirkola H; Karavirta L; Rantanen T; Linnamo V
    Gait Posture; 2019 Oct; 74():33-39. PubMed ID: 31442820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unrestricted stride detection during stair climbing using IMUs.
    Siebers HL; Siroros N; Alrawashdeh W; Migliorini F; Tingart M; Eschweiler J; Betsch M
    Med Eng Phys; 2021 Jun; 92():10-17. PubMed ID: 34167703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of Foot Strike Angle and Forward Propulsion with Wearable Sensors in People with Stroke.
    Ensink CJ; Hofstad C; Theunissen T; Keijsers NLW
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of an IMU Gait Analysis Algorithm for Gait Monitoring in Daily Life Situations.
    Zhou L; Tunca C; Fischer E; Brahms CM; Ersoy C; Granacher U; Arnrich B
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4229-4232. PubMed ID: 33018930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of distal limb mounted inertial measurement unit sensors for stride detection in Warmblood horses at walk and trot.
    Bragança FM; Bosch S; Voskamp JP; Marin-Perianu M; Van der Zwaag BJ; Vernooij JCM; van Weeren PR; Back W
    Equine Vet J; 2017 Jul; 49(4):545-551. PubMed ID: 27862238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy validation of a wearable IMU-based gait analysis in healthy female.
    He Y; Chen Y; Tang L; Chen J; Tang J; Yang X; Su S; Zhao C; Xiao N
    BMC Sports Sci Med Rehabil; 2024 Jan; 16(1):2. PubMed ID: 38167148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inertial measurement unit compared to an optical motion capturing system in post-stroke individuals with foot-drop syndrome.
    Feuvrier F; Sijobert B; Azevedo C; Griffiths K; Alonso S; Dupeyron A; Laffont I; Froger J
    Ann Phys Rehabil Med; 2020 May; 63(3):195-201. PubMed ID: 31009801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of shoe-worn Gait Up Physilog®5 wearable inertial sensors in adolescents.
    Carroll K; Kennedy RA; Koutoulas V; Bui M; Kraan CM
    Gait Posture; 2022 Jan; 91():19-25. PubMed ID: 34628218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Deep Learning Approach for Gait Event Detection from a Single Shank-Worn IMU: Validation in Healthy and Neurological Cohorts.
    Romijnders R; Warmerdam E; Hansen C; Schmidt G; Maetzler W
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validity and Reproducibility of Inertial Physilog Sensors for Spatiotemporal Gait Analysis in Patients With Stroke.
    Lefeber N; Degelaen M; Truyers C; Safin I; Beckwee D
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1865-1874. PubMed ID: 31352347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wearable Inertial Gait Algorithms: Impact of Wear Location and Environment in Healthy and Parkinson's Populations.
    Celik Y; Stuart S; Woo WL; Godfrey A
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of Walking Speed and Its Spatiotemporal Determinants Using a Single Inertial Sensor Worn on the Thigh: From Healthy to Hemiparetic Walking.
    Arumukhom Revi D; De Rossi SMM; Walsh CJ; Awad LN
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depth-Imaging for Gait Analysis on a Treadmill in Older Adults at Risk of Falling.
    Hackbarth M; Koschate J; Lau S; Zieschang T
    IEEE J Transl Eng Health Med; 2023; 11():479-486. PubMed ID: 37817821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a commercial inertial sensor system for spatiotemporal gait measurements in children.
    Lanovaz JL; Oates AR; Treen TT; Unger J; Musselman KE
    Gait Posture; 2017 Jan; 51():14-19. PubMed ID: 27693956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Azure Kinect overground gait spatiotemporal parameters to marker based optical motion capture.
    Guess TM; Bliss R; Hall JB; Kiselica AM
    Gait Posture; 2022 Jul; 96():130-136. PubMed ID: 35635988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gait and Axial Spondyloarthritis: Comparative Gait Analysis Study Using Foot-Worn Inertial Sensors.
    Soulard J; Vaillant J; Baillet A; Gaudin P; Vuillerme N
    JMIR Mhealth Uhealth; 2021 Nov; 9(11):e27087. PubMed ID: 34751663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson's Disease patients.
    Romijnders R; Warmerdam E; Hansen C; Welzel J; Schmidt G; Maetzler W
    J Neuroeng Rehabil; 2021 Feb; 18(1):28. PubMed ID: 33549105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Timing estimation for gait in water from inertial sensor measurements: Analysis of the performance of 17 algorithms.
    Pacini Panebianco G; Bisi MC; Stagni R; Fantozzi S
    Comput Methods Programs Biomed; 2020 Dec; 197():105703. PubMed ID: 32818913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validity and repeatability of inertial measurement units for measuring gait parameters.
    Washabaugh EP; Kalyanaraman T; Adamczyk PG; Claflin ES; Krishnan C
    Gait Posture; 2017 Jun; 55():87-93. PubMed ID: 28433867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.