These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38111738)

  • 1. MULTI-TASK DEEP LEARNING AND UNCERTAINTY ESTIMATION FOR PET HEAD MOTION CORRECTION.
    Lieffrig EV; Zeng T; Zhang J; Fontaine K; Fang X; Revilla E; Lu Y; Onofrey JA
    Proc IEEE Int Symp Biomed Imaging; 2023 Apr; 2023():. PubMed ID: 38111738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supervised Deep Learning for Head Motion Correction in PET.
    Zeng T; Zhang J; Revilla E; Lieffrig EV; Fang X; Lu Y; Onofrey JA
    Med Image Comput Comput Assist Interv; 2022 Sep; 13434():194-203. PubMed ID: 38107622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-Attention for Improved Motion Correction in Brain PET.
    Cai Z; Zeng T; Lieffrig EV; Zhang J; Chen F; Toyonaga T; You C; Xin J; Zheng N; Lu Y; Duncan JS; Onofrey JA
    Mach Learn Clin Neuroimaging (2023); 2023 Oct; 14312():34-45. PubMed ID: 38174216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning for improving PET/CT attenuation correction by elastic registration of anatomical data.
    Schaefferkoetter J; Shah V; Hayden C; Prior JO; Zuehlsdorff S
    Eur J Nucl Med Mol Imaging; 2023 Jul; 50(8):2292-2304. PubMed ID: 36882577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Markerless head motion tracking and event-by-event correction in brain PET.
    Zeng T; Lu Y; Jiang W; Zheng J; Zhang J; Gravel P; Wan Q; Fontaine K; Mulnix T; Jiang Y; Yang Z; Revilla EM; Naganawa M; Toyonaga T; Henry S; Zhang X; Cao T; Hu L; Carson RE
    Phys Med Biol; 2023 Dec; 68(24):. PubMed ID: 37983915
    [No Abstract]   [Full Text] [Related]  

  • 6. Deep learning-based motion quantification from k-space for fast model-based magnetic resonance imaging motion correction.
    Hossbach J; Splitthoff DN; Cauley S; Clifford B; Polak D; Lo WC; Meyer H; Maier A
    Med Phys; 2023 Apr; 50(4):2148-2161. PubMed ID: 36433748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-Driven Motion Detection and Event-by-Event Correction for Brain PET: Comparison with Vicra.
    Lu Y; Naganawa M; Toyonaga T; Gallezot JD; Fontaine K; Ren S; Revilla EM; Mulnix T; Carson RE
    J Nucl Med; 2020 Sep; 61(9):1397-1403. PubMed ID: 32005770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systematic performance evaluation of head motion correction techniques forĀ 3 commercial PET scanners using a reproducible experimental acquisition protocol.
    Inomata T; Watanuki S; Odagiri H; Nambu T; Karakatsanis NA; Ito H; Watabe H; Tashiro M; Shidahara M
    Ann Nucl Med; 2019 Jul; 33(7):459-470. PubMed ID: 30924048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive data-driven motion detection and optimized correction for brain PET.
    Revilla EM; Gallezot JD; Naganawa M; Toyonaga T; Fontaine K; Mulnix T; Onofrey JA; Carson RE; Lu Y
    Neuroimage; 2022 May; 252():119031. PubMed ID: 35257856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respiratory signal estimation for cardiac perfusion SPECT using deep learning.
    Chen Y; Pretorius PH; Lindsay C; Yang Y; King MA
    Med Phys; 2024 Feb; 51(2):1217-1231. PubMed ID: 37523268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast Reconstruction for Deep Learning PET Head Motion Correction.
    Zeng T; Zhang J; Lieffrig EV; Cai Z; Chen F; You C; Naganawa M; Lu Y; Onofrey JA
    Med Image Comput Comput Assist Interv; 2023 Oct; 14229():710-719. PubMed ID: 38174207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The design and implementation of a motion correction scheme for neurological PET.
    Bloomfield PM; Spinks TJ; Reed J; Schnorr L; Westrip AM; Livieratos L; Fulton R; Jones T
    Phys Med Biol; 2003 Apr; 48(8):959-78. PubMed ID: 12741495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning-guided estimation of attenuation correction factors from time-of-flight PET emission data.
    Arabi H; Zaidi H
    Med Image Anal; 2020 Aug; 64():101718. PubMed ID: 32492585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data-efficient Bayesian learning for radial dynamic MR reconstruction.
    Brahma S; Kolbitsch C; Martin J; Schaeffter T; Kofler A
    Med Phys; 2023 Nov; 50(11):6955-6977. PubMed ID: 37367947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correction of head movement by frame-to-frame image realignment for receptor imaging in positron emission tomography studies with [
    Ikoma Y; Kimura Y; Yamada M; Obata T; Ito H; Suhara T
    Ann Nucl Med; 2019 Dec; 33(12):916-929. PubMed ID: 31602596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PET scatter estimation using deep learning U-Net architecture.
    Laurent B; Bousse A; Merlin T; Nekolla S; Visvikis D
    Phys Med Biol; 2023 Mar; 68(6):. PubMed ID: 36240745
    [No Abstract]   [Full Text] [Related]  

  • 17. Calibration of cine MRI segmentation probability for uncertainty estimation using a multi-task cross-task learning architecture.
    Hasan SMK; Linte CA
    Proc SPIE Int Soc Opt Eng; 2022; 12034():. PubMed ID: 35634478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved frame-based estimation of head motion in PET brain imaging.
    Mukherjee JM; Lindsay C; Mukherjee A; Olivier P; Shao L; King MA; Licho R
    Med Phys; 2016 May; 43(5):2443. PubMed ID: 27147355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An objective evaluation method for head motion estimation in PET-Motion corrected centroid-of-distribution.
    Sun C; Revilla EM; Zhang J; Fontaine K; Toyonaga T; Gallezot JD; Mulnix T; Onofrey JA; Carson RE; Lu Y
    Neuroimage; 2022 Dec; 264():119678. PubMed ID: 36261057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian deep learning-based
    Lee HH; Kim H
    Magn Reson Med; 2022 Jul; 88(1):38-52. PubMed ID: 35344604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.