These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 38111879)
41. Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. Köberl M; Müller H; Ramadan EM; Berg G PLoS One; 2011; 6(9):e24452. PubMed ID: 21912695 [TBL] [Abstract][Full Text] [Related]
42. Crop Rotation and Straw Application Impact Microbial Communities in Italian and Philippine Soils and the Rhizosphere of Maarastawi SA; Frindte K; Linnartz M; Knief C Front Microbiol; 2018; 9():1295. PubMed ID: 29963033 [TBL] [Abstract][Full Text] [Related]
43. Evaluation of Disease Suppressiveness of Soils in Croplands by Co-Cultivation of Pathogenic Fusarium oxysporum and Indigenous Soil Microorganisms. Mitsuboshi M; Kioka Y; Noguchi K; Asakawa S Microbes Environ; 2022; 37(4):. PubMed ID: 36184470 [TBL] [Abstract][Full Text] [Related]
44. Banana disease-suppressive soil drives Fan H; He P; Xu S; Li S; Wang Y; Zhang W; Li X; Shang H; Zeng L; Zheng SJ Front Microbiol; 2023; 14():1211301. PubMed ID: 37601384 [TBL] [Abstract][Full Text] [Related]
45. Rhizosphere Fungal Community Dynamics Associated with Rehmannia glutinosa Replant Disease in a Consecutive Monoculture Regime. Wu L; Chen J; Khan MU; Wang J; Wu H; Xiao Z; Zhang Z; Lin W Phytopathology; 2018 Dec; 108(12):1493-1500. PubMed ID: 29975158 [TBL] [Abstract][Full Text] [Related]
46. Development of a Distinct Microbial Community Upon First Season Crop Change in Soils of Long-Term Managed Maize and Rice Fields. Frindte K; Zoche SA; Knief C Front Microbiol; 2020; 11():588198. PubMed ID: 33240244 [TBL] [Abstract][Full Text] [Related]
47. Soil Bacterial Community Was Changed after Brassicaceous Seed Meal Application for Suppression of Ren G; Ma Y; Guo D; Gentry TJ; Hu P; Pierson EA; Gu M Front Microbiol; 2018; 9():185. PubMed ID: 29487582 [TBL] [Abstract][Full Text] [Related]
48. Bacterial Communities in the Rhizosphere at Different Growth Stages of Maize Cultivated in Soil Under Conventional and Conservation Agricultural Practices. Navarro-Noya YE; Chávez-Romero Y; Hereira-Pacheco S; de León Lorenzana AS; Govaerts B; Verhulst N; Dendooven L Microbiol Spectr; 2022 Apr; 10(2):e0183421. PubMed ID: 35254138 [TBL] [Abstract][Full Text] [Related]
49. Comparison of the Rhizosphere Soil Microbial Community Structure and Diversity Between Powdery Mildew-Infected and Noninfected Strawberry Plants in a Greenhouse by High-Throughput Sequencing Technology. Yang J; Wei S; Su D; Zhang Z; Chen S; Luo Z; Shen X; Lai Y; Jamil A; Tong J; Cui X Curr Microbiol; 2020 Aug; 77(8):1724-1736. PubMed ID: 32314037 [TBL] [Abstract][Full Text] [Related]
50. Studying the microbiome of suppressive soils against vascular wilt, caused by Fusarium oxysporum in cape gooseberry (Physalis peruviana). Bautista D; García D; Dávila L; Caro-Quintero A; Cotes AM; González A; Zuluaga AP Environ Microbiol Rep; 2023 Dec; 15(6):757-768. PubMed ID: 37675926 [TBL] [Abstract][Full Text] [Related]
51. Shared Core Microbiome and Functionality of Key Taxa Suppressive to Banana Fusarium Wilt. Shen Z; Thomashow LS; Ou Y; Tao C; Wang J; Xiong W; Liu H; Li R; Shen Q; Kowalchuk GA Research (Wash D C); 2022; 2022():9818073. PubMed ID: 36204250 [TBL] [Abstract][Full Text] [Related]
52. Partitioning the Effects of Soil Legacy and Pathogen Exposure Determining Soil Suppressiveness via Induced Systemic Resistance. Zhang N; Zhu C; Shen Z; Tao C; Ou Y; Li R; Deng X; Shen Q; Dini-Andreote F Plants (Basel); 2022 Oct; 11(21):. PubMed ID: 36365269 [TBL] [Abstract][Full Text] [Related]
53. Tillage System and Crop Sequence Affect Soil Disease Suppressiveness and Carbon Status in Boreal Climate. Palojärvi A; Kellock M; Parikka P; Jauhiainen L; Alakukku L Front Microbiol; 2020; 11():534786. PubMed ID: 33193124 [TBL] [Abstract][Full Text] [Related]
55. Bacterial community assemblages in the rhizosphere soil, root endosphere and cyst of soybean cyst nematode-suppressive soil challenged with nematodes. Hussain M; Hamid MI; Tian J; Hu J; Zhang X; Chen J; Xiang M; Liu X FEMS Microbiol Ecol; 2018 Oct; 94(10):. PubMed ID: 30052910 [TBL] [Abstract][Full Text] [Related]
56. Microbial basis of Fusarium wilt suppression by Allium cultivation. Nishioka T; Marian M; Kobayashi I; Kobayashi Y; Yamamoto K; Tamaki H; Suga H; Shimizu M Sci Rep; 2019 Feb; 9(1):1715. PubMed ID: 30737419 [TBL] [Abstract][Full Text] [Related]
57. Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil-borne plant pathogens. van Elsas JD; Garbeva P; Salles J Biodegradation; 2002; 13(1):29-40. PubMed ID: 12222952 [TBL] [Abstract][Full Text] [Related]
58. Schizotrophic Sclerotinia sclerotiorum-Mediated Root and Rhizosphere Microbiome Alterations Activate Growth and Disease Resistance in Wheat. Tian B; Qu Z; Mehmood MA; Xie J; Cheng J; Fu Y; Jiang D Microbiol Spectr; 2023 Jun; 11(3):e0098123. PubMed ID: 37212718 [TBL] [Abstract][Full Text] [Related]
59. Deciphering differences in the chemical and microbial characteristics of healthy and Fusarium wilt-infected watermelon rhizosphere soils. Meng T; Wang Q; Abbasi P; Ma Y Appl Microbiol Biotechnol; 2019 Feb; 103(3):1497-1509. PubMed ID: 30560450 [TBL] [Abstract][Full Text] [Related]
60. The role of the biogas slurry microbial communities in suppressing fusarium wilt of cucumber. Li N; Chang R; Chen S; Lei J; Liu Y; Cui W; Chen Q; Wu F Waste Manag; 2022 Sep; 151():142-153. PubMed ID: 35952412 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]