These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 38111882)

  • 1. Bacteria existing in pre-pollinated styles (silks) can defend the exposed male gamete fertilization channel of maize against an environmental
    Shrestha A; Limay-Rios V; Brettingham DJL; Raizada MN
    Front Plant Sci; 2023; 14():1292109. PubMed ID: 38111882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmitting silks of maize have a complex and dynamic microbiome.
    Khalaf EM; Shrestha A; Rinne J; Lynch MDJ; Shearer CR; Limay-Rios V; Reid LM; Raizada MN
    Sci Rep; 2021 Jun; 11(1):13215. PubMed ID: 34168223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Cultured Microbiome of Pollinated Maize Silks Shifts after Infection with
    Thompson MEH; Shrestha A; Rinne J; Limay-Rios V; Reid L; Raizada MN
    Pathogens; 2023 Nov; 12(11):. PubMed ID: 38003787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fungal Pathogens of Maize Gaining Free Passage Along the Silk Road.
    Thompson MEH; Raizada MN
    Pathogens; 2018 Oct; 7(4):. PubMed ID: 30314351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of accelerated style senescence in pathogen defense.
    Valdivia ER; Cosgrove DJ; Stephenson AG
    Am J Bot; 2006 Nov; 93(11):1725-9. PubMed ID: 21642117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation.
    Mousa WK; Shearer CR; Limay-Rios V; Zhou T; Raizada MN
    Front Plant Sci; 2015; 6():805. PubMed ID: 26500660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antifungal activity of bacterial strains from maize silks against Fusarium verticillioides.
    de Fátima Dias Diniz G; Cota LV; Figueiredo JEF; Aguiar FM; da Silva DD; de Paula Lana UG; Dos Santos VL; Marriel IE; de Oliveira-Paiva CA
    Arch Microbiol; 2021 Dec; 204(1):89. PubMed ID: 34962587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Population parameters for resistance to Fusarium graminearum and Fusarium verticillioides ear rot among large sets of early, mid-late and late maturing European maize (Zea mays L.) inbred lines.
    Löffler M; Kessel B; Ouzunova M; Miedaner T
    Theor Appl Genet; 2010 Mar; 120(5):1053-62. PubMed ID: 20035317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles of the
    Castorina G; Bigelow M; Hattery T; Zilio M; Sangiorgio S; Caporali E; Venturini G; Iriti M; Yandeau-Nelson MD; Consonni G
    Front Plant Sci; 2023; 14():1228394. PubMed ID: 37546274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pollination between maize and teosinte: an important determinant of gene flow in Mexico.
    Baltazar BM; de Jesús Sánchez-Gonzalez J; de la Cruz-Larios L; Schoper JB
    Theor Appl Genet; 2005 Feb; 110(3):519-26. PubMed ID: 15592808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed.
    Oldenburg E; Höppner F; Ellner F; Weinert J
    Mycotoxin Res; 2017 Aug; 33(3):167-182. PubMed ID: 28455556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covariation between line and testcross performance for reduced mycotoxin concentrations in European maize after silk channel inoculation of two Fusarium species.
    Löffler M; Kessel B; Ouzunova M; Miedaner T
    Theor Appl Genet; 2011 Mar; 122(5):925-34. PubMed ID: 21153627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fungal Endophytes Control
    F Abdallah M; De Boevre M; Landschoot S; De Saeger S; Haesaert G; Audenaert K
    Toxins (Basel); 2018 Nov; 10(12):. PubMed ID: 30477214
    [No Abstract]   [Full Text] [Related]  

  • 14. FUM1--a gene required for fumonisin biosynthesis but not for maize ear rot and ear infection by Gibberella moniliformis in field tests.
    Desjardins AE; Munkvold GP; Plattner RD; Proctor RH
    Mol Plant Microbe Interact; 2002 Nov; 15(11):1157-64. PubMed ID: 12423021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggressiveness and Mycotoxin Production by
    Machado FJ; de Barros AV; McMaster N; Schmale DG; Vaillancourt LJ; Del Ponte EM
    Phytopathology; 2022 Feb; 112(2):271-277. PubMed ID: 34142851
    [No Abstract]   [Full Text] [Related]  

  • 16. Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum.
    Ali ML; Taylor JH; Jie L; Sun G; William M; Kasha KJ; Reid LM; Pauls KP
    Genome; 2005 Jun; 48(3):521-33. PubMed ID: 16121248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First Report of Fusarium Maize Ear Rot Caused by Fusarium kyushuense in China.
    Wang JH; Li HP; Zhang JB; Wang BT; Liao YC
    Plant Dis; 2014 Feb; 98(2):279. PubMed ID: 30708751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First Report of Fusarium temperatum Causing Fusarium Ear Rot on Maize in Northern China.
    Zhang H; Luo W; Pan Y; Xu J; Xu JS; Chen WQ; Feng J
    Plant Dis; 2014 Sep; 98(9):1273. PubMed ID: 30699668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fusarium temperatum as a New Species Causing Ear Rot on Maize in Poland.
    Czembor E; Stępień Ł; Waśkiewicz A
    Plant Dis; 2014 Jul; 98(7):1001. PubMed ID: 30708873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microorganisms from corn stigma with biocontrol potential of Fusarium verticillioides.
    Diniz GFD; Figueiredo JEF; Lana UGP; Marins MS; Silva DD; Cota LV; Marriel IE; Oliveira-Paiva CA
    Braz J Biol; 2022; 82():e262567. PubMed ID: 36043660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.