These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 38112444)

  • 21. Impact of rumen microbiome on cattle carcass traits.
    Sato Y; Sato R; Fukui E; Yoshizawa F
    Sci Rep; 2024 Mar; 14(1):6064. PubMed ID: 38480864
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of periparturient and postpartum diets on rumen methanogen communities in three breeds of primiparous dairy cows.
    Cersosimo LM; Bainbridge ML; Kraft J; Wright AD
    BMC Microbiol; 2016 May; 16():78. PubMed ID: 27141986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets.
    Bayat AR; Kairenius P; Stefański T; Leskinen H; Comtet-Marre S; Forano E; Chaucheyras-Durand F; Shingfield KJ
    J Dairy Sci; 2015 May; 98(5):3166-81. PubMed ID: 25726099
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative Rumen Metagenome and CAZyme Profiles in Cattle and Buffaloes: Implications for Methane Yield and Rumen Fermentation on a Common Diet.
    Malik PK; Trivedi S; Kolte AP; Mohapatra A; Biswas S; Bhattar AVK; Bhatta R; Rahman H
    Microorganisms; 2023 Dec; 12(1):. PubMed ID: 38257874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of Japanese horseradish oil on methane production and ruminal fermentation in vitro and in steers.
    Mohammed N; Ajisaka N; Lila ZA; Hara K; Mikuni K; Hara K; Kanda S; Itabashi H
    J Anim Sci; 2004 Jun; 82(6):1839-46. PubMed ID: 15217012
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Feeding up to 91% concentrate to Holstein and Jersey dairy cows: Effects on enteric methane emission, rumen fermentation and bacterial community, digestibility, production, and feeding behavior.
    Olijhoek DW; Hellwing ALF; Noel SJ; Lund P; Larsen M; Weisbjerg MR; Børsting CF
    J Dairy Sci; 2022 Nov; 105(12):9523-9541. PubMed ID: 36207184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Long-term high-grain diet altered the ruminal pH, fermentation, and composition and functions of the rumen bacterial community, leading to enhanced lactic acid production in Japanese Black beef cattle during fattening.
    Ogata T; Makino H; Ishizuka N; Iwamoto E; Masaki T; Ikuta K; Kim YH; Sato S
    PLoS One; 2019; 14(11):e0225448. PubMed ID: 31770419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3-Nitrooxypropanol supplementation of a forage diet decreased enteric methane emissions from beef cattle without affecting feed intake and apparent total-tract digestibility.
    Alemu AW; Gruninger RJ; Zhang XM; O'Hara E; Kindermann M; Beauchemin KA
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 36617172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methane production and diurnal variation measured in dairy cows and predicted from fermentation pattern and nutrient or carbon flow.
    Brask M; Weisbjerg MR; Hellwing AL; Bannink A; Lund P
    Animal; 2015 Nov; 9(11):1795-806. PubMed ID: 26245140
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ruminal fermentation and microbial ecology of buffaloes and cattle fed the same diet.
    Lwin KO; Kondo M; Ban-Tokuda T; Lapitan RM; Del-Barrio AN; Fujihara T; Matsui H
    Anim Sci J; 2012 Dec; 83(12):767-76. PubMed ID: 23216542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of ergot alkaloids and a mycotoxin deactivating product on in vitro ruminal fermentation using the Rumen simulation technique (RUSITEC).
    Sarich JM; Stanford K; Schwartzkopf-Genswein KS; Gruninger RJ; McAllister TA; Meale SJ; Blakley BR; Penner GB; Ribeiro GO
    J Anim Sci; 2022 Sep; 100(9):. PubMed ID: 35748808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of berry seed residues on ruminal fermentation, methane concentration, milk production, and fatty acid proportions in the rumen and milk of dairy cows.
    Bryszak M; Szumacher-Strabel M; El-Sherbiny M; Stochmal A; Oleszek W; Roj E; Patra AK; Cieslak A
    J Dairy Sci; 2019 Feb; 102(2):1257-1273. PubMed ID: 30580953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dietary selection of metabolically distinct microorganisms drives hydrogen metabolism in ruminants.
    Li QS; Wang R; Ma ZY; Zhang XM; Jiao JZ; Zhang ZG; Ungerfeld EM; Yi KL; Zhang BZ; Long L; Long Y; Tao Y; Huang T; Greening C; Tan ZL; Wang M
    ISME J; 2022 Nov; 16(11):2535-2546. PubMed ID: 35931768
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Short communication: Variability in fermentation end-products and methanogen communities in different rumen sites of dairy cows.
    Ma Z; Wang R; Wang M; Zhang X; Mao H; Tan Z
    J Dairy Sci; 2018 Jun; 101(6):5153-5158. PubMed ID: 29779558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of humic substances on rumen fermentation, nutrient digestibility, methane emissions, and rumen microbiota in beef heifers1.
    Terry SA; Ribeiro GO; Gruninger RJ; Hunerberg M; Ping S; Chaves AV; Burlet J; Beauchemin KA; McAllister TA
    J Anim Sci; 2018 Sep; 96(9):3863-3877. PubMed ID: 30169754
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of Dietary Nonfibrous Carbohydrate/Neutral Detergent Fiber Ratio on Methanogenic Archaea and Cellulose-Degrading Bacteria in the Rumen of Karakul Sheep: a 16S rRNA Gene Sequencing Study.
    Bai T; Pu X; Guo X; Liu J; Zhao L; Zhang X; Zhang S; Cheng L
    Appl Environ Microbiol; 2023 Jan; 89(1):e0129122. PubMed ID: 36541769
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rumen protozoa and methanogenesis: not a simple cause-effect relationship.
    Morgavi DP; Martin C; Jouany JP; Ranilla MJ
    Br J Nutr; 2012 Feb; 107(3):388-97. PubMed ID: 21762544
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of 3-nitrooxypropanol on enteric methane production, rumen fermentation, and feeding behavior in beef cattle fed a high-forage or high-grain diet1.
    Kim SH; Lee C; Pechtl HA; Hettick JM; Campler MR; Pairis-Garcia MD; Beauchemin KA; Celi P; Duval SM
    J Anim Sci; 2019 Jul; 97(7):2687-2699. PubMed ID: 31115441
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of isobutyrate supplementation on ruminal microflora, rumen enzyme activities and methane emissions in Simmental steers.
    Wang C; Liu Q; Zhang YL; Pei CX; Zhang SL; Wang YX; Yang WZ; Bai YS; Shi ZG; Liu XN
    J Anim Physiol Anim Nutr (Berl); 2015 Feb; 99(1):123-131. PubMed ID: 24702602
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Feeding Systems and Host Breeds Influence Ruminal Fermentation, Methane Production, Microbial Diversity and Metagenomic Gene Abundance.
    Bharanidharan R; Lee CH; Thirugnanasambantham K; Ibidhi R; Woo YW; Lee HG; Kim JG; Kim KH
    Front Microbiol; 2021; 12():701081. PubMed ID: 34354694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.