These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 38112495)

  • 1. Toward Accurate Simulation of Coupling between Protein Secondary Structure and Phase Separation.
    Zhang Y; Li S; Gong X; Chen J
    J Am Chem Soc; 2024 Jan; 146(1):342-357. PubMed ID: 38112495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate Simulation of Coupling between Protein Secondary Structure and Liquid-Liquid Phase Separation.
    Zhang Y; Li S; Gong X; Chen J
    bioRxiv; 2023 Aug; ():. PubMed ID: 37662293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HyRes: a coarse-grained model for multi-scale enhanced sampling of disordered protein conformations.
    Liu X; Chen J
    Phys Chem Chem Phys; 2017 Dec; 19(48):32421-32432. PubMed ID: 29186229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward Accurate Coarse-Grained Simulations of Disordered Proteins and Their Dynamic Interactions.
    Zhang Y; Liu X; Chen J
    J Chem Inf Model; 2022 Sep; 62(18):4523-4536. PubMed ID: 36083825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Backbone interactions and secondary structures in phase separation of disordered proteins.
    Li S; Zhang Y; Chen J
    Biochem Soc Trans; 2024 Feb; 52(1):319-329. PubMed ID: 38348795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing Bonded Potentials for a Coarse-Grained Model of Intrinsically Disordered Proteins.
    Rizuan A; Jovic N; Phan TM; Kim YC; Mittal J
    J Chem Inf Model; 2022 Sep; 62(18):4474-4485. PubMed ID: 36066390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Balancing thermodynamic stability, dynamics, and kinetics in phase separation of intrinsically disordered proteins.
    Zhang G; Chu X
    J Chem Phys; 2024 Sep; 161(9):. PubMed ID: 39225535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refined Bonded Terms in Coarse-Grained Models for Intrinsically Disordered Proteins Improve Backbone Conformations.
    Hu Z; Sun T; Chen W; Nordenskiöld L; Lu L
    J Phys Chem B; 2024 Jul; 128(27):6492-6508. PubMed ID: 38950000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale Computational Framework for the Liquid-Liquid Phase Separation of Intrinsically Disordered Proteins.
    Fernando KS; Jahanmir G; Unarta IC; Chau Y
    Langmuir; 2024 Apr; 40(14):7607-7619. PubMed ID: 38546977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior.
    Schuster BS; Dignon GL; Tang WS; Kelley FM; Ranganath AK; Jahnke CN; Simpkins AG; Regy RM; Hammer DA; Good MC; Mittal J
    Proc Natl Acad Sci U S A; 2020 May; 117(21):11421-11431. PubMed ID: 32393642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved coarse-grained model for studying sequence dependent phase separation of disordered proteins.
    Regy RM; Thompson J; Kim YC; Mittal J
    Protein Sci; 2021 Jul; 30(7):1371-1379. PubMed ID: 33934416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Practical Guide to All-Atom and Coarse-Grained Molecular Dynamics Simulations Using Amber and Gromacs: A Case Study of Disulfide-Bond Impact on the Intrinsically Disordered Amyloid Beta.
    Smardz P; Anila MM; Rogowski P; Li MS; Różycki B; Krupa P
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of proline to the pre-structuring tendency of transient helical secondary structure elements in intrinsically disordered proteins.
    Lee C; Kalmar L; Xue B; Tompa P; Daughdrill GW; Uversky VN; Han KH
    Biochim Biophys Acta; 2014 Mar; 1840(3):993-1003. PubMed ID: 24211251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing SIRAH's Capability to Simulate Intrinsically Disordered Proteins and Peptides.
    Klein F; Barrera EE; Pantano S
    J Chem Theory Comput; 2021 Feb; 17(2):599-604. PubMed ID: 33411518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General Purpose Water Model Can Improve Atomistic Simulations of Intrinsically Disordered Proteins.
    Shabane PS; Izadi S; Onufriev AV
    J Chem Theory Comput; 2019 Apr; 15(4):2620-2634. PubMed ID: 30865832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coarse-Grained Modeling of Liquid-Liquid Phase Separation in Cells: Challenges and Opportunities.
    Shi S; Zhao L; Lu ZY
    J Phys Chem Lett; 2024 Jul; 15(28):7280-7287. PubMed ID: 38979955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale enhanced sampling of intrinsically disordered protein conformations.
    Lee KH; Chen J
    J Comput Chem; 2016 Mar; 37(6):550-7. PubMed ID: 26052838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles.
    Chan-Yao-Chong M; Durand D; Ha-Duong T
    J Chem Inf Model; 2019 May; 59(5):1743-1758. PubMed ID: 30840442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative roles of charge,
    Das S; Lin YH; Vernon RM; Forman-Kay JD; Chan HS
    Proc Natl Acad Sci U S A; 2020 Nov; 117(46):28795-28805. PubMed ID: 33139563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.