These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38112506)

  • 1. Machine learning of kinetic energy densities with target and feature smoothing: Better results with fewer training data.
    Manzhos S; Lüder J; Ihara M
    J Chem Phys; 2023 Dec; 159(23):. PubMed ID: 38112506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic energy densities based on the fourth order gradient expansion: performance in different classes of materials and improvement via machine learning.
    Golub P; Manzhos S
    Phys Chem Chem Phys; 2018 Dec; 21(1):378-395. PubMed ID: 30525136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the orbital-free density functional theory description of covalent materials.
    Zhou B; Ligneres VL; Carter EA
    J Chem Phys; 2005 Jan; 122(4):44103. PubMed ID: 15740231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Kohn-Sham kinetic energy density as indicator of the electron localization: atomic shell structure.
    Navarrete-López AM; Garza J; Vargas R
    J Chem Phys; 2008 Mar; 128(10):104110. PubMed ID: 18345880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density.
    Seino J; Kageyama R; Fujinami M; Ikabata Y; Nakai H
    J Chem Phys; 2018 Jun; 148(24):241705. PubMed ID: 29960373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-driven kinetic energy density fitting for orbital-free DFT: Linear vs Gaussian process regression.
    Manzhos S; Golub P
    J Chem Phys; 2020 Aug; 153(7):074104. PubMed ID: 32828090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonparametric Local Pseudopotentials with Machine Learning: A Tin Pseudopotential Built Using Gaussian Process Regression.
    Lüder J; Manzhos S
    J Phys Chem A; 2020 Dec; 124(52):11111-11124. PubMed ID: 33337885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orbital-free density-functional theory for metal slabs.
    Horowitz CM; Proetto CR; Pitarke JM
    J Chem Phys; 2023 Oct; 159(16):. PubMed ID: 37888758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization and analysis of the Kohn-Sham kinetic energy density and its orbital-free description in molecules.
    Cancio AC; Stewart D; Kuna A
    J Chem Phys; 2016 Feb; 144(8):084107. PubMed ID: 26931681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate parameterization of the kinetic energy functional for calculations using exact-exchange.
    Kumar S; Sadigh B; Zhu S; Suryanarayana P; Hamel S; Gallagher B; Bulatov V; Klepeis J; Samanta A
    J Chem Phys; 2022 Jan; 156(2):024107. PubMed ID: 35032977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward Orbital-Free Density Functional Theory with Small Data Sets and Deep Learning.
    Ryczko K; Wetzel SJ; Melko RG; Tamblyn I
    J Chem Theory Comput; 2022 Feb; 18(2):1122-1128. PubMed ID: 34995061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Pauli energy to appraise the quality of approximate semilocal non-interacting kinetic energy density functionals.
    Liu S; Zhao D; Rong C; Lu T; Liu S
    J Chem Phys; 2019 May; 150(20):204106. PubMed ID: 31153167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laplacian-dependent models of the kinetic energy density: Applications in subsystem density functional theory with meta-generalized gradient approximation functionals.
    Śmiga S; Fabiano E; Constantin LA; Della Sala F
    J Chem Phys; 2017 Feb; 146(6):064105. PubMed ID: 28201888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Density differences in embedding theory with external orbital orthogonality.
    Tamukong PK; Khait YG; Hoffmann MR
    J Phys Chem A; 2014 Oct; 118(39):9182-200. PubMed ID: 25084344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transferable local pseudopotentials for magnesium, aluminum and silicon.
    Huang C; Carter EA
    Phys Chem Chem Phys; 2008 Dec; 10(47):7109-20. PubMed ID: 19039345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning to Approximate Density Functionals.
    Kalita B; Li L; McCarty RJ; Burke K
    Acc Chem Res; 2021 Feb; 54(4):818-826. PubMed ID: 33534553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subsystem density functional theory with meta-generalized gradient approximation exchange-correlation functionals.
    Śmiga S; Fabiano E; Laricchia S; Constantin LA; Della Sala F
    J Chem Phys; 2015 Apr; 142(15):154121. PubMed ID: 25903880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Binding in Post-Kohn-Sham Orbital-Free DFT.
    Borgoo A; Green JA; Tozer DJ
    J Chem Theory Comput; 2014 Dec; 10(12):5338-45. PubMed ID: 26583217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First principles local pseudopotential for silver: towards orbital-free density-functional theory for transition metals.
    Zhou B; Carter EA
    J Chem Phys; 2005 May; 122(18):184108. PubMed ID: 15918695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerating the convergence of the total energy evaluation in density functional theory calculations.
    Zhou B; Wang YA
    J Chem Phys; 2008 Feb; 128(8):084101. PubMed ID: 18315027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.